Learning Recovery
 Grade 4 Summer Packet

Grade 4 Mission 5 Lessons 1-21 (21 lessons)

Equivalent Fractions

Grade 4 Mission 6 Lessons 1-16 (15 lessons*)

Decimal Fractions

Students should complete one of the two sections below for each Mission:

Section One

Complete with all digital lessons

- Student Notes
- Exit Tickets

Section Two

If internet access is not available, complete paper-based work

- Problem Sets
- Homework
*Some lessons omitted from Zearn Math's Digital Lesson sequence - visit our Help Center to learn more

Mission 5: Equivalent Fractions

Section One: Student Notes and Exit Tickets
 To complete with all digital lessons

Mission 5:

Equivalent Fractions

Name: \qquad

© 2019 Zearn

Portions of this work, Zearn Math, are derivative of Eureka Math and licensed by Great Minds. © 2019 Great Minds. All rights reserved. Eureka Math was created by Great Minds in partnership with the New York State Education Department and also released as EngageNY.

Zearn ${ }^{\circledR}$ is a registered trademark.

Printed in the U.S.A.

This book may be purchased from the publisher at zearn.org.

Fourth Edition

Lesson 1 G:4 M:5

EXIT TICKET

Name: \qquad
Complete: \square

Date:
Class:
\qquad
\qquad

1. Complete the number bond and write the number sentence to match the tape diagram.

2. Draw and label tape diagrams to model each number sentence.

l) b. $\frac{5}{6}=\frac{2}{6}+\frac{2}{6}+\frac{1}{6}$

Lesson 2

 G:4 M:5
Decompose and Group

ZEARN STUDENT NOTES

Name: \qquad
Complete: \square

Date:
Class:
\qquad —_

1 How can you decompose $\frac{7}{8}$ into two parts?

I
I
I
I
I
I

Lesson 2 G:4 M:5

EXIT TICKET

Name: \qquad Date:
Complete: \square
\square
\qquad

Step 1: Draw and shade a tape diagram of the given fraction.
Step 2: Record the decomposition of the fraction in three different ways using number sentences. $\frac{4}{7}$ TAPE DIAGRAM

Lesson 3 G:4 M:5
 Decompose and Multiply ZEARN STUDENT NOTES

Name: \qquad Date: \qquad
Complete: \square
\square Class: \qquad

1 Decompose $\frac{3}{4}$ as the sum of unit fractions.
Then, express that addition sentence using multiplication.

Lesson 3 G:4 M:5

EXIT TICKET

Name: \qquad Date:
Complete: \square
\qquad

1. Decompose each fraction modeled by a tape diagram as a sum of unit fractions. Write the equivalent multiplication sentence.
a.

b.

2. Draw a tape diagram and record the given fraction's decomposition into unit fractions as a multiplication sentence.
$\frac{6}{9}$

। I I I
I I
I I
I I
I I
I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

Lesson 4 G:4 M:5

Different Decompositions

ZEARN STUDENT NOTES

Name: \qquad Date:
Complete: \square

Class: \qquad

1
Use the tape diagram to show the decomposition of $\frac{1}{3}$ as the sum of smaller unit fractions.

2
Write an addition sentence and a multiplication sentence to show how many fifteenths it takes to make 1 fifth.

Lesson 4 G:4 M:5

EXIT TICKET

Name: \qquad Date:
Complete: \square

Class: \qquad

1. The total length of the tape diagram represents 1 whole. Decompose the shaded unit fraction as the sum of smaller unit fractions in at least two different ways.

2. Draw a tape diagram to prove the following statement.

|
$\| \frac{2}{3}=\frac{4}{6}$
I

Lesson 5 G:4 M:5

EXIT TICKET

Name: \qquad Date:
Complete: \square
\qquad

1. Draw horizontal lines to decompose each rectangle into the number of rows as indicated. Use the model to give the shaded area as both a sum of unit fractions and as a multiplication sentence.
a. 2 rows

b. 3 rows

2. Draw an area model to show the decomposition represented by the number sentence below. Represent the decomposition as a sum of unit fractions and as a multiplication sentence.

$\frac{3}{5}=\frac{6}{10}$

Lesson 6 G:4 M:5

Area Model - Breakdown! ZEARN STUDENT NOTES

Name: \qquad
Complete: \square

Date:
Class: \qquad

1 Draw an area model to show that $\frac{2}{3}=\frac{8}{12}$.

Draw an area model to represent 5 thirds.
Then partition it into sixths to find an equivalent fraction.

Lesson 6 G:4 M:5

EXIT TICKET

Name: \qquad Date:
Complete: \square
\qquad

1. The rectangle below represents 1 whole. Draw horizontal lines to decompose the rectangle into eighths. Use the model to give the shaded area as a sum and as a product of unit fractions. Use parentheses to show the relationship between the number sentences.

2. Draw an area model to show the decomposition represented by the number sentence below.

I
$\frac{4}{5}=\frac{8}{10}$

। ।
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
'

Lesson 7 G:4 M:5

Same Area

ZEARN STUDENT NOTES

Name: \qquad Date:
Class:
\qquad
Complete: \square \qquad

Find an equivalent fraction to $\frac{1}{4}$ that has twice as many units. Use the area model and multiplication.

Rename $\frac{1}{3}$ using ninths.
Verify that the fraction you made is equivalent to $\frac{1}{3}$ by drawing an area model.

Lesson 7 G:4 M:5

EXIT TICKET

Name: \qquad Date:
Complete:
\qquad

1. Draw two different area models to represent 1 fourth by shading.

Decompose the shaded fraction into (a) eighths and (b) twelfths.

Use multiplication to show how each fraction is equivalent to 1 fourth.

Lesson 8 G:4 M:5
 Multiply for Equality?
 ZEARN STUDENT NOTES

Name: Date:
Complete: \square
Class:
\qquad
\qquad

1 Use multiplication to prove that $\frac{3}{5}=\frac{6}{10}$.
Then, draw an area model to confirm your number sentence.

Lesson 8 G:4 M:5

EXIT TICKET

Name:

Date:

Complete: \square Class: \qquad

1. Use multiplication to create an equivalent fraction for the fraction below.

2. Determine if the following is a true number sentence. If needed, correct the statement by changing the right-hand side of the number sentence.
SHOW YOURWORK

Lesson 9 G:4 M:5

Same Fraction, Fewer Parts

ZEARN STUDENT NOTES

Name: \qquad Date: \qquad
Complete: \square \qquad

1
Compose the shaded fraction into an equivalent fraction by circling the new unit.

Then, write a division sentence based on your composition.

Draw area models to show $\frac{2}{6}$ and $\frac{4}{12}$.
Then, find equivalent fractions.

Lesson 9 G:4 M:5

EXIT TICKET

Name: \qquad Date:
Complete:

\qquad

1. In the first area model, show $\frac{3}{6}$. In the second area model, show $\frac{6}{12}$. Show how both fractions can be composed, or renamed, as the same unit fraction.

2. Express the equivalent fractions in a number sentence using division.

Lesson 10 G:4 M:5

Same Fraction, Fewest Parts

ZEARN STUDENT NOTES

Name: \qquad Date: \qquad
Complete: \square Class: \qquad

Draw an area model to represent $\frac{8}{12}$.
Then compose a fraction equivalent to $\frac{8}{12}$, with larger fractional units.

Rename $\frac{6}{12}$ with the largest units possible without using an area model.

Express the equivalence using a division number sentence.

1	SHOW YOUR WORK		
,			
\|			
1	6		
I		\div	
1		\div	
I			
I			
1			
1	EXTRA WORKSPACE		
1			
1			
I			
1			
1			
1			
,			
I			
1			
1			
1			
,			
1			
1			
1			
1			
1			

Lesson 10 G:4 M:5

EXIT TICKET

Name:

Date:

Complete: \square Class: \qquad

1. Draw an area model to show why the fractions are equivalent. Show the equivalence in a number sentence using division.

	SHOW YOUR WORK

Lesson 11 G:4 M:5

EXIT TICKET

Name: Date: \qquad
Complete: \square Class: \qquad

1. Partition a number line from 0 to 1 into sixths. Decompose $\frac{2}{6}$ into 4 equal lengths.
2. Write a number sentence using multiplication to show what fraction represented on the number line is equivalent to $\frac{2}{6}$.
3. Write a number sentence using division to show what fraction represented on the number line is equivalent to $\frac{2}{6}$.

Lesson 12 G:4 M:5

EXIT TICKET

Name: \qquad Date: \qquad
Complete: \square
Class: \qquad

1. Plot the following points on the number line without measuring.
a. $\frac{8}{10}$
b. $\frac{3}{5}$
c. $\frac{1}{4}$

2. Use the number line in Problem 1 to compare the fractions by writing $>,<$, or $=$ in the circles.
a. $\frac{1}{4} \circlearrowright \frac{1}{2}$
b. $\frac{8}{10} \circlearrowright \frac{3}{5}$
c. $\frac{1}{2} \circlearrowright \frac{3}{5}$
d. $\frac{1}{4} \bigcirc \frac{8}{10}$

Lesson 13 G:4 M:5
 ZEARN STUDENT NOTES

Name: \qquad
Complete: \square

Date:
Class: \qquad

1 Compare $\frac{11}{8}$ and $\frac{10}{6}$.

SHOW YOUR WORK

I
I
I
I
I
I

Lesson 13 G:4 M:5

EXIT TICKET

Name: \qquad Date:

Complete: \square

Class: \qquad

1. Place the following fractions on the number line given.

2. Compare the fractions using $>,<$, or $=$.

Lesson 14 G:4 M:5

Make the Same to Compare

 ZEARN STUDENT NOTESName: \qquad
Complete: \square

Date:
Class: \qquad

1 Use tape diagrams to model and compare $\frac{3}{5}$ and $\frac{7}{10}$.

I
I
I
I
I
I

Lesson 14 G:4 M:5

EXIT TICKET

Name: \qquad Date:
Complete: \square

Class: \qquad

1. Draw tape diagrams to compare the following fractions:

2. Use a number line to compare the following fractions:

Lesson 15 G:4 M:5

EXIT TICKET

Name: \qquad Date:
Complete: \square
\square
\qquad

1. Draw an area model for each pair of fractions, and use it to compare the two fractions by writing $>,<$, or $=$ in the circle.

Lesson 16 G:4 M:5
 Like Units Make It Work ZEARN STUDENT NOTES

Name:
Date:
Complete: \square Class:

15 sixths -4 sixths $=$ SHOW YOUR WORK
\qquad

Lesson 16 G:4 M:5

EXIT TICKET

Name:

Date:

\qquad
Complete:
 Class: \qquad

1. Solve. Use a number bond to decompose the difference. Record your final answer as a mixed number.

2. Solve. Use a number bond to decompose the sum. Record your final answer as a mixed number.

Lesson 17 G:4 M:5
 Whole Use
 ZEARN STUDENT NOTES

Name: \qquad
Complete: \square

Date:
Class: \qquad

1 Solve $1 \frac{1}{4}-\frac{3}{4}$.

Lesson 17 G:4 M:5

EXIT TICKET

Name: \qquad Date:
Complete: \square
\qquad

1. Solve. Model the problem with a number line, and solve by both counting up and subtracting.

2. Find the difference in two ways. Use a number bond to show the decomposition.

$$
1 \frac{2}{7}-\frac{5}{7}
$$

Lesson 18 G:4 M:5
 Three's Company
 ZEARN STUDENT NOTES

Name:
Date:
Complete: \square Class:
(1) $\frac{1}{6}+\frac{4}{6}+\frac{2}{6}$

Mrs. Cashmore bought a melon that weighed $1 \frac{3}{5}$ pounds. She cut a piece that weighed $\frac{4}{5}$ pound and gave it to her neighbor. She then had $\frac{1}{5}$ pound as a snack.

How much of the melon is left?

Lesson 18

 G:4 M:5
EXIT TICKET

Name: \qquad
Complete: \square

Date:
Class: \qquad

1. Solve the following problems. Use number bonds to help you.

Lesson 19 G:4 M:5

EXIT TICKET

Name:

Date:

\qquad
Complete: \square
\qquad
Use the RDW process to solve.

1. Mrs. Smith took her bird to the vet. Tweety weighed $1 \frac{3}{10}$ pounds. The vet said that Tweety weighed $\frac{4}{10}$ pound more last year. How much did Tweety weigh last year?

2. Hudson picked $1 \frac{1}{4}$ baskets of apples. Suzy picked 2 baskets of apples. How many more baskets of apples did Suzy pick than Hudson?

I
 - SHOW YOUR WORK

1 SOW YOUR WORK

I

I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

Lesson 20 G:4 M:5

Like Units, Like Sum
ZEARN STUDENT NOTES

Name: \qquad
Complete: \square

Date:
Class:
\qquad
\qquad
$1 \frac{1}{2}+\frac{1}{8}$. Use the tape diagrams to help you solve. SHOW YOUR WORK

Lesson 20 G:4 M:5

EXIT TICKET

Name:
Date:
Complete: \square
Class: \qquad

1. Draw a number line to model the addition. Solve, and then write a complete number sentence.

2. Solve without drawing a model.

1 I
I I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
| |
I I
I I
I I

Lesson 21

 G:4 M:5
Sum It Up

ZEARN STUDENT NOTES

Name: \qquad Date:
Complete: \square
Class:
\qquad
\qquad

Draw a number bond to show $\frac{9}{6}$ as a whole and parts.
Then, use your number bond to write $\frac{9}{6}$ as a mixed number.

Lesson 21 G:4 M:5

EXIT TICKET

Name: \qquad Date:
Complete:
\qquad

1. Solve. Write a complete number sentence. Use a number bond to write each sum as a mixed number. Use a model if needed.

Mission 5: Equivalent Fractions

Section Two: Problem Sets and Homework To complete if internet access is not available

Name \qquad Date \qquad

1. Draw a number bond, and write the number sentence to match each tape diagram. The first one is done for you.
a.

$1=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}$

b.

c.

1
d.

e.

g.

h.

2. Draw and label tape diagrams to model each decomposition.
a. $1=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}$
b. $\frac{4}{5}=\frac{1}{5}+\frac{2}{5}+\frac{1}{5}$
c. $\frac{7}{8}=\frac{3}{8}+\frac{3}{8}+\frac{1}{8}$
d. $\frac{11}{8}=\frac{7}{8}+\frac{1}{8}+\frac{3}{8}$
e. $\frac{12}{10}=\frac{6}{10}+\frac{4}{10}+\frac{2}{10}$
g. $\quad 1 \frac{2}{3}=1+\frac{2}{3}$
f. $\frac{15}{12}=\frac{8}{12}+\frac{3}{12}+\frac{4}{12}$

ค. $1 \frac{5}{8}=1+\frac{1}{8}+\frac{1}{8}+\frac{3}{8}$

Name \qquad Date \qquad

1. Step 1: Draw and shade a tape diagram of the given fraction.

Step 2: Record the decomposition as a sum of unit fractions.
Step 3: Record the decomposition of the fraction two more ways.
(The first one has been done for you.)
a. $\frac{5}{8}$

$$
\frac{5}{8}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}
$$

$$
\frac{5}{8}=\frac{2}{8}+\frac{2}{8}+\frac{1}{8}
$$

$$
\frac{5}{8}=\frac{2}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}
$$

b. $\frac{9}{10}$
c. $\frac{3}{2}$
2. Step 1: Draw and shade a tape diagram of the given fraction.

Step 2: Record the decomposition of the fraction in three different ways using number sentences.
a. $\frac{7}{8}$
b. $\frac{5}{3}$
C. $\frac{7}{5}$
d. $1 \frac{1}{3}$

Name \qquad Date \qquad

1. Decompose each fraction modeled by a tape diagram as a sum of unit fractions. Write the equivalent multiplication sentence. The first one has been done for you.
a.

$$
\frac{3}{4}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4} \quad \frac{3}{4}=3 \times \frac{1}{4}
$$

b.

c.

d.

e.

2. Write the following fractions greater than 1 as the sum of two products.
a.

b.

3. Draw a tape diagram, and record the given fraction's decomposition into unit fractions as a multiplication sentence.
a. $\frac{4}{5}$
b. $\frac{5}{8}$
C. $\frac{7}{9}$
d. $\frac{7}{4}$
e. $\frac{7}{6}$

Modified from original

Name \qquad Date \qquad

1. The total length of each tape diagram represents 1. Decompose the shaded unit fractions as the sum of smaller unit fractions in at least two different ways. The first one has been done for you.
a.

$\frac{1}{2}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}$

c.

d.

2. The total length of each tape diagram represents 1. Decompose the shaded fractions as the sum of smaller unit fractions in at least two different ways.
a.

b.

3. Draw and label tape diagrams to prove the following statements. The first one has been done for you.
a. $\frac{2}{5}=\frac{4}{10}$

b. $\frac{2}{6}=\frac{4}{12}$
C. $\frac{3}{4}=\frac{6}{8}$
d. $\frac{3}{4}=\frac{9}{12}$
4. Show that $\frac{1}{2}$ is equivalent to $\frac{4}{8}$ using a tape diagram and a number sentence.
5. Show that $\frac{2}{3}$ is equivalent to $\frac{6}{9}$ using a tape diagram and a number sentence.
6. Show that $\frac{4}{6}$ is equivalent to $\frac{8}{12}$ using a tape diagram and a number sentence.

Name \qquad Date \qquad

1. Draw horizontal lines to decompose each rectangle into the number of rows as indicated. Use the model to give the shaded area as both a sum of unit fractions and as a multiplication sentence.
a. 2 rows

$$
\begin{gathered}
\frac{1}{4}=-2 \\
\frac{1}{4}=\frac{1}{8}+-=- \\
\frac{1}{4}=2 \times-=-
\end{gathered}
$$

b. 2 rows

c. 4 rows

2. Draw area models to show the decompositions represented by the number sentences below. Represent the decomposition as a sum of unit fractions and as a multiplication sentence.
a. $\frac{1}{2}=\frac{3}{6}$
b. $\frac{1}{2}=\frac{4}{8}$
C. $\frac{1}{2}=\frac{5}{10}$
d. $\frac{1}{3}=\frac{2}{6}$
e. $\frac{1}{3}=\frac{4}{12}$
f. $\frac{1}{4}=\frac{3}{12}$
3. Explain why $\frac{1}{12}+\frac{1}{12}+\frac{1}{12}$ is the same as $\frac{1}{4}$.

Name \qquad Date \qquad

1. Each rectangle represents 1. Draw horizontal lines to decompose each rectangle into the fractional units as indicated. Use the model to give the shaded area as a sum and as a product of unit fractions. Use parentheses to show the relationship between the number sentences. The first one has been partially done for you.
a. Sixths

$\overline{6}$

$$
\begin{gathered}
\frac{2}{3}=\frac{4}{-} \\
\frac{1}{3}+\frac{1}{3}=\left(\frac{1}{6}+\frac{1}{6}\right)+\left(\frac{1}{6}+\frac{1}{6}\right)=-\frac{4}{6} \\
\left(\frac{1}{6}+\frac{1}{6}\right)+\left(\frac{1}{6}+\frac{1}{6}\right)=(2 \times-)+(2 \times-)=\frac{4}{3}=4 \times-=\frac{4}{2} \\
\frac{2}{3}=4
\end{gathered}
$$

b. Tenths

c. Twelfths

2. Draw area models to show the decompositions represented by the number sentences below. Express each as a sum and product of unit fractions. Use parentheses to show the relationship between the number sentences.
a. $\frac{3}{5}=\frac{6}{10}$
b. $\frac{3}{4}=\frac{6}{8}$
3. Step 1: Draw an area model for a fraction with units of thirds, fourths, or fifths.

Step 2: Shade in more than one fractional unit.
Step 3: Partition the area model again to find an equivalent fraction.
Step 4: Write the equivalent fractions as a number sentence. (If you've written a number sentence like this one already on this Problem Set, start over.)

Name \qquad Date \qquad

Each rectangle represents 1.

1. The shaded unit fractions have been decomposed into smaller units. Express the equivalent fractions in a number sentence using multiplication. The first one has been done for you.
a.

$$
\frac{1}{2}=\frac{1 \times 2}{2 \times 2}=\frac{2}{4}
$$

b.

c.

d.

2. Decompose the shaded fractions into smaller units using the area models. Express the equivalent fractions in a number sentence using multiplication.
a.

b.

c.

d.

e. What happened to the size of the fractional units when you decomposed the fraction?
f. What happened to the total number of units in the whole when you decomposed the fraction?
3. Draw three different area models to represent 1 third by shading. Decompose the shaded fraction into (a) sixths, (b) ninths, and (c) twelfths. Use multiplication to show how each fraction is equivalent to 1 third.
a.
b.
c.

Name \qquad Date \qquad

Each rectangle represents 1.

1. The shaded fractions have been decomposed into smaller units. Express the equivalent fractions in a number sentence using multiplication. The first one has been done for you.
a.

b.

c.

d.

2. Decompose the shaded fractions into smaller units, as given below. Express the equivalent fractions in a number sentence using multiplication.
a. Decompose into tenths.
b. Decompose into fifteenths.

Lesson 8:
3. Draw area models to prove that the following number sentences are true.
a. $\frac{2}{5}=\frac{4}{10}$
b. $\frac{2}{3}=\frac{8}{12}$
c. $\frac{3}{6}=\frac{6}{12}$
d. $\frac{4}{6}=\frac{8}{12}$
4. Use multiplication to find an equivalent fraction for each fraction below.
a. $\frac{3}{4}$
b. $\frac{4}{5}$
c. $\frac{7}{6}$
d. $\frac{12}{7}$
5. Determine which of the following are true number sentences. Correct those that are false by changing the right-hand side of the number sentence.
a. $\frac{4}{3}=\frac{8}{9}$
b. $\frac{5}{4}=\frac{10}{8}$
C. $\frac{4}{5}=\frac{12}{10}$
d. $\frac{4}{6}=\frac{12}{18}$

Name \qquad Date \qquad

Each rectangle represents 1.

1. Compose the shaded fractions into larger fractional units. Express the equivalent fractions in a number sentence using division. The first one has been done for you.
a.

b.

$$
\frac{2}{4}=\frac{2 \div 2}{4 \div 2}=\frac{1}{2}
$$

c.

d.

2. Compose the shaded fractions into larger fractional units. Express the equivalent fractions in a number sentence using division.
a.

b.

c.

d.

e. What happened to the size of the fractional units when you composed the fraction?
f. What happened to the total number of units in the whole when you composed the fraction?
3. a. In the first area model, show 2 sixths. In the second area model, show 3 ninths. Show how both fractions can be renamed as the same unit fraction.

b. Express the equivalent fractions in a number sentence using division.
4. a. In the first area model, show 2 eighths. In the second area model, show 3 twelfths. Show how both fractions can be composed, or renamed, as the same unit fraction.

b. Express the equivalent fractions in a number sentence using division.

Name \qquad Date \qquad

Each rectangle represents 1.

1. Compose the shaded fraction into larger fractional units. Express the equivalent fractions in a number sentence using division. The first one has been done for you.
a.

b.

$$
\frac{4}{6}=\frac{4 \div 2}{6 \div 2}=\frac{2}{3}
$$

c.

d.

This work is licensed under a
2. Compose the shaded fractions into larger fractional units. Express the equivalent fractions in a number sentence using division.
a.

b.

3. Draw an area model to represent each number sentence below.
a. $\frac{4}{10}=\frac{4 \div 2}{10 \div 2}=\frac{2}{5}$
b. $\frac{6}{9}=\frac{6 \div 3}{9 \div 3}=\frac{2}{3}$
4. Use division to rename each fraction given below. Draw a model if that helps you. See if you can use the largest common factor.
a. $\frac{4}{8}$
b. $\frac{12}{16}$
c. $\frac{12}{20}$
d. $\frac{16}{20}$

Name
Date \qquad

1. Label each number line with the fractions shown on the tape diagram. Circle the fraction that labels the point on the number line that also names the shaded part of the tape diagram.
a.

b.

c.

2. Write number sentences using multiplication to show:
a. The fraction represented in $1(a)$ is equivalent to the fraction represented in $1(b)$.
b. The fraction represented in $1(a)$ is equivalent to the fraction represented in $1(c)$.
3. Use each shaded tape diagram below as a ruler to draw a number line. Mark each number line with the fractional units shown on the tape diagram, and circle the fraction that labels the point on the number line that also names the shaded part of the tape diagram.
a.

b.

c.

4. Write number sentences using division to show:
a. The fraction represented in $3(a)$ is equivalent to the fraction represented in $3(b)$.
b. The fraction represented in $3(\mathrm{a})$ is equivalent to the fraction represented in 3(c).
5. a. Partition a number line from 0 to 1 into fifths. Decompose $\frac{2}{5}$ into 4 equal lengths.
b. Write a number sentence using multiplication to show what fraction represented on the number line is equivalent to $\frac{2}{5}$.
c. Write a number sentence using division to show what fraction represented on the number line is equivalent to $\frac{2}{5}$.

Name \qquad Date \qquad

1. a. Plot the following points on the number line without measuring.
i. $\frac{1}{3}$
ii. $\frac{5}{6}$
iii. $\frac{7}{12}$

b. Use the number line in Part (a) to compare the fractions by writing $>,<$, or $=$ on the lines.
i. $\frac{7}{12} \quad \frac{1}{2}$
ii. $\frac{7}{12}=\frac{5}{6}$
2. a. Plot the following points on the number line without measuring.
i. $\frac{11}{12}$
ii. $\frac{1}{4}$
iii. $\frac{3}{8}$

b. Select two fractions from Part (a), and use the given number line to compare them by writing $>,<$, or $=$.
c. Explain how you plotted the points in Part (a).
3. Compare the fractions given below by writing > or < on the lines.

Give a brief explanation for each answer referring to the benchmarks $0, \frac{1}{2}$, and 1 .
a. $\frac{1}{2} \longrightarrow \frac{3}{4}$
b. $\frac{1}{2} \longrightarrow \frac{7}{8}$
c. $\frac{2}{3} \longrightarrow \frac{2}{5}$
d. $\frac{9}{10}=\frac{3}{5}$
e. $\frac{2}{3} \longrightarrow \frac{7}{8}$
f. $\frac{1}{3} \longrightarrow \frac{2}{4}$
g. $\frac{2}{3} \longrightarrow \frac{5}{10}$
h. $\frac{11}{12} \longrightarrow \frac{2}{5}$
i. $\frac{49}{100} \longrightarrow \frac{51}{100}$
j. $\frac{7}{16} \longrightarrow \frac{51}{100}$

Name \qquad Date \qquad

1. Place the following fractions on the number line given.
a. $\frac{4}{3}$
b. $\frac{11}{6}$
C. $\frac{17}{12}$

2. Use the number line in Problem 1 to compare the fractions by writing $>,<$, or $=$ on the lines.
a. $1 \frac{5}{6}$ \qquad $1 \frac{5}{12}$
b. $1 \frac{1}{3}$ \qquad $1 \frac{5}{12}$
3. Place the following fractions on the number line given.
a. $\frac{11}{8}$
b. $\frac{7}{4}$
C. $\frac{15}{12}$

4. Use the number line in Problem 3 to explain the reasoning you used when determining whether $\frac{11}{8}$ or $\frac{15}{12}$ is greater.
5. Compare the fractions given below by writing >or < on the lines. Give a brief explanation for each answer referring to benchmarks.
a. $\frac{3}{8} \longrightarrow \frac{7}{12}$
b. $\frac{5}{12} \longrightarrow \frac{7}{8}$
C. $\frac{8}{6} \longrightarrow \frac{11}{12}$
d. $\frac{5}{12} \longrightarrow \frac{1}{3}$
e. $\frac{7}{5} \longrightarrow \frac{11}{10}$
f. $\frac{5}{4} \longrightarrow \frac{7}{8}$
g. $\frac{13}{12} \longrightarrow \frac{9}{10}$
h. $\frac{6}{8} \longrightarrow \frac{5}{4}$
i. $\frac{8}{12} \longrightarrow \frac{8}{4}$
j. $\frac{7}{5} \longrightarrow \frac{16}{10}$

Name \qquad Date \qquad

1. Compare the pairs of fractions by reasoning about the size of the units. Use $>,<$, or $=$.
a. 1 fourth \qquad 1 fifth
b. 3 fourths \qquad 3 fifths
c. 1 tenth \qquad 1 twelfth
d. 7 tenths \qquad 7 twelfths
2. Compare by reasoning about the following pairs of fractions with the same or related numerators. Use $>,<$, or $=$. Explain your thinking using words, pictures, or numbers. Problem 2(b) has been done for you.
a. $\frac{3}{5}=\frac{3}{4}$
b. $\frac{2}{5}<\frac{4}{9}$
because $\frac{2}{5}=\frac{4}{10}$
4 tenths is less
than 4 ninths because
tenths are smaller than
 ninths.

c. $\frac{7}{11}-\frac{7}{13}$
d. $\frac{6}{7}=\frac{12}{15}$
3. Draw two tape diagrams to model each pair of the following fractions with related denominators. Use >, <, or = to compare.
a. $\frac{2}{3} _\frac{5}{6}$
b. $\frac{3}{4}-\frac{7}{8}$
c. $1 \frac{3}{4}-1 \frac{7}{12}$
4. Draw one number line to model each pair of fractions with related denominators. Use $>,<$, or $=$ to compare.
a. $\frac{2}{3}-\frac{5}{6}$
b. $\frac{3}{8}-\frac{1}{4}$
c. $\frac{2}{6}-\frac{5}{12}$
d. $\frac{8}{9}=\frac{2}{3}$
5. Compare each pair of fractions using \rangle,\langle, or $=$. Draw a model if you choose to.
a. $\frac{3}{4}-\frac{3}{7}$
b. $\frac{4}{5}-\frac{8}{12}$
c. $\frac{7}{10}-\frac{3}{5}$
d. $\frac{2}{3}-\frac{11}{15}$
e. $\frac{3}{4}-\frac{11}{12}$
f. $\frac{7}{3}-\frac{7}{4}$
g. $1 \frac{1}{3}-1 \frac{2}{9}$
h. $1 \frac{2}{3}-1 \frac{4}{7}$
\qquad
h. $1 \frac{2}{3}-1 \frac{4}{7}$
6. Timmy drew the picture to the right and claimed that $\frac{2}{3}$ is less than $\frac{7}{12}$. Evan says he thinks $\frac{2}{3}$ is greater than $\frac{7}{12}$. Who is correct? Support your
 answer with a picture.

Name \qquad Date \qquad

1. Draw an area model for each pair of fractions, and use it to compare the two fractions by writing $>,<$, or $=$ on the line. The first two have been partially done for you. Each rectangle represents 1.

2. Rename the fractions, as needed, using multiplication in order to compare each pair of fractions by writing $>,<$, or $=$.
a. $\frac{3}{5} \longrightarrow \frac{5}{6}$
b. $\frac{2}{6} \longrightarrow \frac{3}{8}$
C. $\frac{7}{5} \longrightarrow \frac{10}{8}$
d. $\frac{4}{3} \longrightarrow \frac{6}{5}$
3. Use any method to compare the fractions. Record your answer using $>,<$, or $=$.
a. $\frac{3}{4} \longrightarrow \frac{7}{8}$
b. $\frac{6}{8} \longrightarrow \frac{3}{5}$
c. $\frac{6}{4} \longrightarrow \frac{8}{6}$
d. $\frac{8}{5} \longrightarrow \frac{9}{6}$
4. Explain two ways you have learned to compare fractions. Provide evidence using words, pictures, or numbers.

Name \qquad Date \qquad

1. Solve.
a. 3 fifths -1 fifth = \qquad
b. 5 fifths -3 fifths $=$ \qquad
c. 3 halves -2 halves $=$ \qquad d. 6 fourths -3 fourths $=$ \qquad
2. Solve.
a. $\frac{5}{6}-\frac{3}{6}$
b. $\frac{6}{8}-\frac{4}{8}$
c. $\frac{3}{10}-\frac{3}{10}$
d. $\frac{5}{5}-\frac{4}{5}$
e. $\frac{5}{4}-\frac{4}{4}$
f. $\frac{5}{4}-\frac{3}{4}$
3. Solve. Use a number bond to show how to convert the difference to a mixed number. Problem (a) has been completed for you.
a. $\frac{12}{8}-\frac{3}{8}=\frac{9}{8}=1 \frac{1}{8}$
b. $\frac{12}{6}-\frac{5}{6}$

c. $\frac{9}{5}-\frac{3}{5}$
d. $\frac{14}{8}-\frac{3}{8}$
e. $\frac{8}{4}-\frac{2}{4}$
f. $\frac{15}{10}-\frac{3}{10}$
4. Solve. Write the sum in unit form.
a. 2 fourths +1 fourth $=$ \qquad b. 4 fifths +3 fifths $=$ \qquad
5. Solve.
a. $\frac{2}{8}+\frac{5}{8}$
b. $\frac{4}{12}+\frac{5}{12}$
6. Solve. Use a number bond to decompose the sum. Record your final answer as a mixed number. Problem (a) has been completed for you.
a. $\frac{3}{5}+\frac{4}{5}=\frac{7}{5}=1 \frac{2}{5}$
b. $\frac{4}{4}+\frac{3}{4}$
c. $\frac{6}{9}+\frac{6}{9}$
d. $\frac{7}{10}+\frac{6}{10}$
e. $\frac{5}{6}+\frac{7}{6}$
f. $\frac{9}{8}+\frac{5}{8}$
7. Solve. Use a number line to model your answer.
a. $\frac{7}{4}-\frac{5}{4}$
b. $\frac{5}{4}+\frac{2}{4}$

Name \qquad Date \qquad

1. Use the following three fractions to write two subtraction and two addition number sentences.
a. $\frac{8}{5}, \frac{2}{5}, \frac{10}{5} \quad$ b. $\frac{15}{8}, \frac{7}{8}, \frac{8}{8}$
2. Solve. Model each subtraction problem with a number line, and solve by both counting up and subtracting. Part (a) has been completed for you.
a. $1-\frac{3}{4}$
$\frac{4}{4}-\frac{3}{4}=\frac{1}{4}$

b. $1-\frac{8}{10}$
c. $1-\frac{3}{5}$
d. $1-\frac{5}{8}$
e. $1 \frac{2}{10}-\frac{7}{10}$
f. $1 \frac{1}{5}-\frac{3}{5}$
3. Find the difference in two ways. Use number bonds to decompose the total. Part (a) has been completed for you.
a. $1 \frac{2}{5}-\frac{4}{5}$
$\frac{5}{5} \frac{2}{5}$

$$
\begin{aligned}
& \frac{5}{5}+\frac{2}{5}=\frac{7}{5} \\
& \frac{7}{5}-\frac{4}{5}=\frac{3}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{5}{5}-\frac{4}{5}=\frac{1}{5} \\
& \frac{1}{5}+\frac{2}{5}=\frac{3}{5}
\end{aligned}
$$

b. $1 \frac{3}{6}-\frac{4}{6}$
c. $1 \frac{6}{8}-\frac{7}{8}$
d. $1 \frac{1}{10}-\frac{7}{10}$
e. $1 \frac{3}{12}-\frac{6}{12}$

Name \qquad Date \qquad

1. Show one way to solve each problem. Express sums and differences as a mixed number when possible. Use number bonds when it helps you. Part (a) is partially completed.

2. Monica and Stuart used different strategies to solve $\frac{5}{8}+\frac{2}{8}+\frac{5}{8}$.

$$
\begin{gathered}
\text { Monica's Way } \\
\frac{5}{8}+\frac{2}{8}+\frac{5}{8}=\frac{7}{8}+\frac{5}{8}=\frac{8}{8}+\frac{4}{8}=1 \frac{4}{8} \\
\frac{1}{8} \frac{4}{8}
\end{gathered}
$$

Stuart's Way

$$
\frac{5}{8}+\frac{2}{8}+\frac{5}{8}=\frac{12}{8}=1+\frac{4}{8}=1 \frac{4}{8}
$$

$\begin{array}{ll}\frac{8}{8} & \frac{4}{8}\end{array}$

Whose strategy do you like best? Why?
3. You gave one solution for each part of Problem 1. Now, for each problem indicated below, give a different solution method.

1(c) $\frac{5}{7}+\frac{7}{7}+\frac{2}{7}$

1(f) $\quad \frac{4}{10}+\frac{11}{10}+\frac{5}{10}$

1 (g) $\quad 1-\frac{3}{12}-\frac{4}{12}$

Name \qquad Date \qquad

Use the RDW process to solve.

1. Sue ran $\frac{9}{10}$ mile on Monday and $\frac{7}{10}$ mile on Tuesday. How many miles did Sue run in the 2 days?
2. Mr. Salazar cut his son's birthday cake into 8 equal pieces. Mr. Salazar, Mrs. Salazar, and the birthday boy each ate 1 piece of cake. What fraction of the cake was left?
3. Maria spent $\frac{4}{7}$ of her money on a book and saved the rest. What fraction of her money did Maria save?
4. Mrs. Jones had $1 \frac{4}{8}$ pizzas left after a party. After giving some to Gary, she had $\frac{7}{8}$ pizza left. What fraction of a pizza did she give Gary?
5. A baker had 2 pans of corn bread. He served $1 \frac{1}{4}$ pans. What fraction of a pan was left?
6. Marius combined $\frac{4}{8}$ gallon of lemonade, $\frac{3}{8}$ gallon of cranberry juice, and $\frac{6}{8}$ gallon of soda water to make punch for a party. How many gallons of punch did he make in all?

Name \qquad Date \qquad

1. Use a tape diagram to represent each addend. Decompose one of the tape diagrams to make like units. Then, write the complete number sentence. Part (a) is partially completed.
a. $\frac{1}{4}+\frac{1}{8}$
b. $\frac{1}{4}+\frac{1}{12}$

$$
\overline{8}+\overline{8}=\overline{8}
$$

c. $\frac{2}{6}+\frac{1}{3}$
d. $\frac{1}{2}+\frac{3}{8}$
e. $\frac{3}{10}+\frac{3}{5}$
f. $\frac{2}{3}+\frac{2}{9}$
2. Estimate to determine if the sum is between 0 and 1 or 1 and 2 . Draw a number line to model the addition. Then, write a complete number sentence. Part (a) has been completed for you.
a. $\frac{1}{2}+\frac{1}{4} \quad \frac{2}{4}+\frac{1}{4}=\frac{3}{4}$
b. $\frac{1}{2}+\frac{4}{10}$

c. $\frac{6}{10}+\frac{1}{2}$
d. $\frac{2}{3}+\frac{3}{6}$
e. $\frac{3}{4}+\frac{6}{8}$
f. $\frac{4}{10}+\frac{6}{5}$
3. Solve the following addition problem without drawing a model. Show your work.

$$
\frac{2}{3}+\frac{4}{6}
$$

Name \qquad Date \qquad

1. Draw a tape diagram to represent each addend. Decompose one of the tape diagrams to make like units. Then, write a complete number sentence. Use a number bond to write each sum as a mixed number.
a. $\frac{3}{4}+\frac{1}{2}$
b. $\frac{2}{3}+\frac{3}{6}$
c. $\frac{5}{6}+\frac{1}{3}$
d. $\frac{4}{5}+\frac{7}{10}$
2. Draw a number line to model the addition. Then, write a complete number sentence. Use a number bond to write each sum as a mixed number.
a. $\frac{1}{2}+\frac{3}{4}$
b. $\frac{1}{2}+\frac{6}{8}$
C. $\frac{7}{10}+\frac{3}{5}$
d. $\frac{2}{3}+\frac{5}{6}$
3. Solve. Write the sum as a mixed number. Draw a model if needed.
a. $\frac{3}{4}+\frac{2}{8}$
b. $\frac{4}{6}+\frac{1}{2}$
c. $\frac{4}{6}+\frac{2}{3}$
d. $\frac{8}{10}+\frac{3}{5}$
e. $\frac{5}{8}+\frac{3}{4}$
f. $\frac{5}{8}+\frac{2}{4}$
g. $\frac{1}{2}+\frac{5}{8}$
h. $\frac{3}{10}+\frac{4}{5}$

Start of Homework section for Mission 5

Name \qquad Date \qquad

1. Draw a number bond, and write the number sentence to match each tape diagram. The first one is done for you.
a.

$\frac{2}{3}=\frac{1}{3}+\frac{1}{3}$

c.

d.

e.

f.

2. Draw and label tape diagrams to match each number sentence.
a. $\frac{5}{8}=\frac{2}{8}+\frac{2}{8}+\frac{1}{8}$
b. $\frac{12}{8}=\frac{6}{8}+\frac{2}{8}+\frac{4}{8}$
c. $\frac{11}{10}=\frac{5}{10}+\frac{5}{10}+\frac{1}{10}$
d. $\frac{13}{12}=\frac{7}{12}+\frac{1}{12}+\frac{5}{12}$
e. $1 \frac{1}{4}=1+\frac{1}{4}$
f. $1 \frac{2}{7}=1+\frac{2}{7}$

Name \qquad Date \qquad

1. Step 1: Draw and shade a tape diagram of the given fraction.

Step 2: Record the decomposition as a sum of unit fractions.
Step 3: Record the decomposition of the fraction two more ways.
(The first one has been done for you.)
a. $\frac{5}{6}$

$$
\frac{5}{6}=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}
$$

$$
\frac{5}{6}=\frac{2}{6}+\frac{2}{6}+\frac{1}{6}
$$

$$
\frac{5}{6}=\frac{1}{6}+\frac{4}{6}
$$

b. $\frac{6}{8}$
C. $\frac{7}{10}$
2. Step 1: Draw and shade a tape diagram of the given fraction.

Step 2: Record the decomposition of the fraction in three different ways using number sentences.
a. $\frac{10}{12}$
b. $\frac{5}{4}$
c. $\frac{6}{5}$
d. $1 \frac{1}{4}$

Name \qquad Date \qquad

1. Decompose each fraction modeled by a tape diagram as a sum of unit fractions. Write the equivalent multiplication sentence. The first one has been done for you.
a.

$$
\frac{2}{3}=\frac{1}{3}+\frac{1}{3} \quad \frac{2}{3}=2 \times \frac{1}{3}
$$

b.

c.

d.

2. Write the following fractions greater than 1 as the sum of two products.
a.

3. Draw a tape diagram, and record the given fraction's decomposition into unit fractions as a multiplication sentence.
a. $\frac{3}{5}$
b. $\frac{3}{8}$
c. $\frac{5}{9}$
d. $\frac{8}{5}$
e. $\frac{12}{4}$

Name \qquad Date \qquad

1. The total length of each tape diagram represents 1 . Decompose the shaded unit fractions as the sum of smaller unit fractions in at least two different ways. The first one has been done for you.
a.

b.

2. The total length of each tape diagram represents 1. Decompose the shaded fractions as the sum of smaller unit fractions in at least two different ways.
a.

b.

c.

3. Draw tape diagrams to prove the following statements. The first one has been done for you.
a. $\frac{2}{5}=\frac{4}{10}$

b. $\frac{3}{6}=\frac{6}{12}$
c. $\frac{2}{6}=\frac{6}{18}$
d. $\frac{3}{4}=\frac{12}{16}$
4. Show that $\frac{1}{2}$ is equivalent to $\frac{6}{12}$ using a tape diagram and a number sentence.
5. Show that $\frac{2}{3}$ is equivalent to $\frac{8}{12}$ using a tape diagram and a number sentence.
6. Show that $\frac{4}{5}$ is equivalent to $\frac{12}{15}$ using a tape diagram and a number sentence.

Name \qquad Date \qquad

1. Draw horizontal lines to decompose each rectangle into the number of rows as indicated. Use the model to give the shaded area as both a sum of unit fractions and as a multiplication sentence.
a. 3 rows

$$
\begin{gathered}
\frac{1}{2}=\frac{3}{2} \\
\frac{1}{2}=\frac{1}{6}+-+-=\frac{3}{6} \\
\frac{1}{2}=3 \times-=\frac{3}{6}
\end{gathered}
$$

b. 2 rows

c. 4 rows

2. Draw area models to show the decompositions represented by the number sentences below. Represent the decomposition as a sum of unit fractions and as a multiplication sentence.
a. $\frac{1}{3}=\frac{2}{6}$
b. $\frac{1}{3}=\frac{3}{9}$
c. $\frac{1}{3}=\frac{4}{12}$
d. $\frac{1}{3}=\frac{5}{15}$
e. $\frac{1}{5}=\frac{2}{10}$
f. $\frac{1}{5}=\frac{3}{15}$
3. Explain why $\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}$ is the same as $\frac{1}{3}$.

Name \qquad Date \qquad

1. Each rectangle represents 1. Draw horizontal lines to decompose each rectangle into the fractional units as indicated. Use the model to give the shaded area as a sum and as a product of unit fractions. Use parentheses to show the relationship between the number sentences. The first one has been partially done for you.

$\overline{10}$

$$
\begin{gathered}
\frac{2}{5}=-\frac{4}{5} \\
\frac{1}{5}+\frac{-}{5}=\left(\frac{1}{10}+\frac{1}{10}\right)+\left(\frac{1}{10}+\frac{1}{10}\right)=\frac{4}{\left(\frac{1}{10}+\frac{1}{10}\right)+\left(\frac{1}{10}+\frac{1}{10}\right)=(2 \times-)+(2 \times-)=\frac{4}{2}}
\end{gathered}
$$

$$
\frac{2}{5}=4 \times-=\frac{4}{}
$$

b. Eighths

c. Fifteenths

2. Draw area models to show the decompositions represented by the number sentences below. Express each as a sum and product of unit fractions. Use parentheses to show the relationship between the number sentences.
a. $\frac{2}{3}=\frac{4}{6}$
b. $\frac{4}{5}=\frac{8}{10}$
3. Step 1: Draw an area model for a fraction with units of thirds, fourths, or fifths.

Step 2: Shade in more than one fractional unit.
Step 3: Partition the area model again to find an equivalent fraction.
Step 4: Write the equivalent fractions as a number sentence. (If you have written a number sentence like this one already in this Homework, start over.)

Name \qquad Date \qquad
Each rectangle represents 1.

1. The shaded unit fractions have been decomposed into smaller units. Express the equivalent fractions in a number sentence using multiplication. The first one has been done for you.
a.

b.

$$
\frac{1}{2}=\frac{1 \times 2}{2 \times 2}=\frac{2}{4}
$$

c.

d.

2. Decompose the shaded fractions into smaller units using the area models. Express the equivalent fractions in a number sentence using multiplication.
a.

b.

c.

d.

3. Draw three different area models to represent 1 fourth by shading.

Decompose the shaded fraction into (a) eighths, (b) twelfths, and (c) sixteenths.
Use multiplication to show how each fraction is equivalent to 1 fourth.
a.
b.
c.

Name \qquad Date \qquad

Each rectangle represents 1.

1. The shaded fractions have been decomposed into smaller units. Express the equivalent fractions in a number sentence using multiplication. The first one has been done for you.
a.

b.

c.

d.

2. Decompose both shaded fractions into twelfths. Express the equivalent fractions in a number sentence using multiplication.
a.

b.

his work is licensed under a
3. Draw area models to prove that the following number sentences are true.
a. $\frac{1}{3}=\frac{2}{6}$
b. $\frac{2}{5}=\frac{4}{10}$
C. $\frac{5}{7}=\frac{10}{14}$
d. $\frac{3}{6}=\frac{9}{18}$
4. Use multiplication to create an equivalent fraction for each fraction below.
a. $\frac{2}{3}$
b. $\frac{5}{6}$
C. $\frac{6}{5}$
d. $\frac{10}{8}$
5. Determine which of the following are true number sentences. Correct those that are false by changing the right-hand side of the number sentence.
a. $\frac{2}{3}=\frac{4}{9}$
b. $\frac{5}{6}=\frac{10}{12}$
c. $\frac{3}{5}=\frac{6}{15}$
d. $\frac{7}{4}=\frac{21}{12}$

Name \qquad Date \qquad

Each rectangle represents 1.

1. Compose the shaded fractions into larger fractional units. Express the equivalent fractions in a number sentence using division. The first one has been done for you.
a.

b

$$
\frac{2}{4}=\frac{2 \div 2}{4 \div 2}=\frac{1}{2}
$$

c.

d.

2. Compose the shaded fractions into larger fractional units. Express the equivalent fractions in a number sentence using division.
a.

b.

c.

d.

e. What happened to the size of the fractional units when you composed the fraction?
f. What happened to the total number of units in the whole when you composed the fraction?
3. a. In the first area model, show 4 eighths. In the second area model, show 6 twelfths. Show how both fractions can be composed, or renamed, as the same unit fraction.

b. Express the equivalent fractions in a number sentence using division.
4. a. In the first area model, show 4 eighths. In the second area model, show 8 sixteenths. Show how both fractions can be composed, or renamed, as the same unit fraction.

b. Express the equivalent fractions in a number sentence using division.

Name \qquad Date \qquad

Each rectangle represents 1.

1. Compose the shaded fraction into larger fractional units. Express the equivalent fractions in a number sentence using division. The first one has been done for you.
a.

b.

$$
\frac{4}{6}=\frac{4 \div 2}{6 \div 2}=\frac{2}{3}
$$

c.

d.

2. Compose the shaded fractions into larger fractional units. Express the equivalent fractions in a number sentence using division.
a.

b.

3. Draw an area model to represent each number sentence below.
a. $\frac{6}{15}=\frac{6 \div 3}{15 \div 3}=\frac{2}{5}$
b. $\frac{6}{18}=\frac{6 \div 3}{18 \div 3}=\frac{2}{6}$
4. Use division to rename each fraction given below. Draw a model if that helps you. See if you can use the largest common factor.
a. $\frac{6}{12}$
b. $\frac{4}{12}$
c. $\frac{8}{12}$
d. $\frac{12}{18}$

Name \qquad Date \qquad

1. Label each number line with the fractions shown on the tape diagram. Circle the fraction that labels the point on the number line that also names the shaded part of the tape diagram.

b.

2. Write number sentences using multiplication to show:
a. The fraction represented in $1(a)$ is equivalent to the fraction represented in 1(b).
b. The fraction represented in $1(a)$ is equivalent to the fraction represented in 1 (c).
3. Use each shaded tape diagram below as a ruler to draw a number line. Mark each number line with the fractional units shown on the tape diagram, and circle the fraction that labels the point on the number line that also names the shaded part of the tape diagram.
a.
1

	1			

b.

4. Write a number sentence using division to show the fraction represented in $3(a)$ is equivalent to the fraction represented in 3(b).
5. a. Partition a number line from 0 to 1 into fourths. Decompose $\frac{3}{4}$ into 6 equal lengths.
b. Write a number sentence using multiplication to show what fraction represented on the number line is equivalent to $\frac{3}{4}$.
c. Write a number sentence using division to show what fraction represented on the number line is equivalent to $\frac{3}{4}$.

Name \qquad Date \qquad

1. a. Plot the following points on the number line without measuring.
i. $\frac{2}{3}$
ii. $\frac{1}{6}$
iii. $\frac{4}{10}$

b. Use the number line in Part (a) to compare the fractions by writing $>,<$, or $=$ on the lines.
i. $\frac{2}{3} \longrightarrow \frac{1}{2}$
ii. $\frac{4}{10} \longrightarrow \frac{1}{6}$
2. a. Plot the following points on the number line without measuring.

b. Select two fractions from Part (a), and use the given number line to compare them by writing $>,<$, or $=$.
c. Explain how you plotted the points in Part (a).
3. Compare the fractions given below by writing >or < on the lines.

Give a brief explanation for each answer referring to the benchmark of $0, \frac{1}{2}$, and 1 .
a. $\frac{1}{2} \longrightarrow \frac{1}{4}$
b. $\frac{6}{8} \longrightarrow \frac{1}{2}$
c. $\frac{3}{4} \longrightarrow \frac{3}{5}$
d. $\frac{4}{6}=\frac{9}{12}$
e. $\frac{2}{3} \longrightarrow \frac{1}{4}$
f. $\frac{4}{5} \longrightarrow \frac{8}{12}$
g. $\frac{1}{3} \longrightarrow \frac{3}{6}$
h. $\frac{7}{8} \longrightarrow \frac{3}{5}$
i. $\frac{51}{100} \longrightarrow \frac{5}{10}$
j. $\frac{8}{14} \longrightarrow \frac{49}{100}$

Name \qquad Date \qquad

1. Place the following fractions on the number line given.
a. $\frac{3}{2}$
b. $\frac{9}{5}$
C. $\frac{14}{10}$

2. Use the number line in Problem 1 to compare the fractions by writing $>,<$, or $=$ on the lines.
a. $1 \frac{1}{6} \longrightarrow 1 \frac{4}{12}$
b. $1 \frac{1}{2} \longrightarrow 1 \frac{4}{5}$
3. Place the following fractions on the number line given.
a. $\frac{12}{9}$
b. $\frac{6}{5}$
C. $\frac{18}{15}$

4. Use the number line in Problem 3 to explain the reasoning you used when determining whether $\frac{12}{9}$ or $\frac{18}{15}$ was greater.
5. Compare the fractions given below by writing > or < on the lines. Give a brief explanation for each answer referring to benchmarks.
a. $\frac{2}{5} \longrightarrow \frac{6}{8}$
b. $\frac{6}{10} \longrightarrow \frac{5}{6}$
C. $\frac{6}{4} \longrightarrow \frac{7}{8}$
d. $\frac{1}{4} \longrightarrow \frac{8}{12}$
e. $\frac{14}{12}$ \qquad
$\frac{11}{6}$
f. $\frac{8}{9} \longrightarrow \frac{3}{2}$
g. $\frac{7}{8} \longrightarrow \frac{11}{10}$
h. $\frac{3}{4} \longrightarrow \frac{4}{3}$
i. $\frac{3}{8} \longrightarrow \frac{3}{2}$
j. $\frac{9}{6} \longrightarrow \frac{16}{12}$

Name
Date \qquad

1. Compare the pairs of fractions by reasoning about the size of the units. Use $>,<$, or $=$.
a. 1 third \qquad 1 sixth
b. 2 halves \qquad 2 thirds
c. 2 fourths \qquad 2 sixths
d. 5 eighths \qquad 5 tenths
2. Compare by reasoning about the following pairs of fractions with the same or related numerators. Use $>,<$, or $=$. Explain your thinking using words, pictures, or numbers. Problem 2(b) has been done for you.
a. $\frac{3}{6}-\frac{3}{7}$
b. $\frac{2}{5}<\frac{4}{9}$
because $\frac{2}{5}=\frac{4}{10}$
4 tenths is less
than 4 ninths because

tenths are smaller than ninths.

c. $\frac{3}{11} \longrightarrow \frac{3}{13}$
d. $\frac{5}{7}-\frac{10}{13}$
3. Draw two tape diagrams to model each pair of the following fractions with related denominators. Use >, <, or = to compare.
a. $\frac{3}{4} \longrightarrow \frac{7}{12}$
b. $\frac{2}{4} \longrightarrow \frac{1}{8}$
c. $1 \frac{4}{10} 1 \frac{3}{5}$
4. Draw one number line to model each pair of fractions with related denominators. Use $>,<$, or $=$ to compare.
a. $\frac{3}{4}$ \qquad
b. $\frac{11}{12} \longrightarrow \frac{3}{4}$
c. $\frac{4}{5} \longrightarrow \frac{7}{10}$
d. $\frac{8}{9} \longrightarrow \frac{2}{3}$
5. Compare each pair of fractions using $>$, $<$, or $=$. Draw a model if you choose to.
a. $\frac{1}{7} \longrightarrow \frac{2}{7}$
b. $\frac{5}{7} \longrightarrow \frac{11}{14}$
c. $\frac{7}{10} \longrightarrow \frac{3}{5}$
d. $\frac{2}{3} \longrightarrow \frac{9}{15}$
e. $\frac{3}{4} \longrightarrow \frac{9}{12}$
f. $\frac{5}{3} \longrightarrow \frac{5}{2}$
6. Simon claims $\frac{4}{9}$ is greater than $\frac{1}{3}$. Ted thinks $\frac{4}{9}$ is less than $\frac{1}{3}$. Who is correct? Support your answer with a picture.

Name
Date \qquad

1. Draw an area model for each pair of fractions, and use it to compare the two fractions by writing $>,<$, or $=$ on the line. The first two have been partially done for you. Each rectangle represents 1.

2. Rename the fractions, as needed, using multiplication in order to compare each pair of fractions by writing $>,<$, or $=$.
a. $\frac{2}{3}=\frac{2}{4}$
b. $\frac{4}{7} \longrightarrow \frac{1}{2}$
c. $\frac{5}{4} \longrightarrow \frac{9}{8}$
d. $\frac{8}{12} \longrightarrow \frac{5}{8}$
3. Use any method to compare the fractions. Record your answer using $\gg<$, or $=$.
a. $\frac{8}{9} \longrightarrow \frac{2}{3}$
b. $\frac{4}{7}=\frac{4}{5}$
C. $\frac{3}{2} \longrightarrow \frac{9}{6}$
d. $\frac{11}{7} \longrightarrow \frac{5}{3}$
4. Explain which method you prefer using to compare fractions. Provide an example using words, pictures, or numbers.

Name \qquad Date \qquad

1. Solve.
a. 3 sixths -2 sixths $=$ \qquad
b. 5 tenths -3 tenths $=$ \qquad
c. 3 fourths -2 fourths $=$ \qquad d. 5 thirds -2 thirds $=$ \qquad
2. Solve.
a. $\frac{3}{5}-\frac{2}{5}$
b. $\frac{7}{9}-\frac{3}{9}$
c. $\frac{7}{12}-\frac{3}{12}$
d. $\frac{6}{6}-\frac{4}{6}$
e. $\frac{5}{3}-\frac{2}{3}$
f. $\frac{7}{4}-\frac{5}{4}$
3. Solve. Use a number bond to decompose the difference. Record your final answer as a mixed number. Problem (a) has been completed for you.
a. $\frac{12}{6}-\frac{3}{6}=\frac{9}{6}=1 \frac{3}{6}$
b. $\frac{17}{8}-\frac{6}{8}$

c. $\frac{9}{5}-\frac{3}{5}$
d. $\frac{11}{4}-\frac{6}{4}$
e. $\frac{10}{7}-\frac{2}{7}$
f. $\frac{21}{10}-\frac{9}{10}$
4. Solve. Write the sum in unit form.
a. 4 fifths +2 fifths $=$ \qquad b. 5 eighths +2 eighths $=$ \qquad
5. Solve.
a. $\frac{3}{11}+\frac{6}{11}$
b. $\frac{3}{10}+\frac{6}{10}$
6. Solve. Use a number bond to decompose the sum. Record your final answer as a mixed number.
a. $\frac{3}{4}+\frac{3}{4}$
b. $\frac{8}{12}+\frac{6}{12}$
c. $\frac{5}{8}+\frac{7}{8}$
d. $\frac{8}{10}+\frac{5}{10}$
e. $\frac{3}{5}+\frac{6}{5}$
f. $\frac{4}{3}+\frac{2}{3}$
7. Solve. Use a number line to model your answer.
a. $\frac{11}{9}-\frac{5}{9}$
b. $\frac{13}{12}+\frac{4}{12}$

Name \qquad Date \qquad

1. Use the following three fractions to write two subtraction and two addition number sentences.

| a. $\frac{5}{6}, \frac{4}{6}, \frac{9}{6}$ | b. $\frac{5}{9}, \frac{13}{9}, \frac{8}{9}$ |
| :--- | :--- | :--- |
| | |
| | |

2. Solve. Model each subtraction problem with a number line, and solve by both counting up and subtracting.
a. $1-\frac{5}{8}$
b. $1-\frac{2}{5}$
c. $1 \frac{3}{6}-\frac{5}{6}$
d. $1-\frac{1}{4}$
e. $1 \frac{1}{3}-\frac{2}{3}$
f. $1 \frac{1}{5}-\frac{2}{5}$
3. Find the difference in two ways. Use number bonds to decompose the total. Part (a) has been completed for you.
a. $1 \frac{2}{5}-\frac{4}{5}$
$\frac{5}{5} \frac{2}{5}$
$\frac{5}{5}+\frac{2}{5}=\frac{7}{5}$
$\frac{7}{5}-\frac{4}{5}=\frac{3}{5}$
$\frac{5}{5}-\frac{4}{5}=\frac{1}{5}$
$\frac{1}{5}+\frac{2}{5}=\frac{3}{5}$
b. $1 \frac{3}{8}-\frac{7}{8}$
c. $1 \frac{1}{4}-\frac{3}{4}$
d. $1 \frac{2}{7}-\frac{5}{7}$
e. $1 \frac{3}{10}-\frac{7}{10}$

Name \qquad Date \qquad

1. Show one way to solve each problem. Express sums and differences as a mixed number when possible. Use number bonds when it helps you. Part (a) is partially completed.

2. Bonnie used two different strategies to solve $\frac{5}{10}+\frac{4}{10}+\frac{3}{10}$.

Bonnie's First Strategy

$\frac{5}{10}+\frac{4}{10}+\frac{3}{10}=\frac{9}{10}+\frac{3}{10}=\frac{10}{10}+\frac{2}{10}=1 \frac{2}{10}$

$\frac{1}{10} \quad \frac{2}{10}$

$$
\frac{5}{10}+\frac{4}{10}+\frac{3}{10}=\frac{12}{10}=1+\frac{2}{10}=1 \frac{2}{10}
$$

Which strategy do you like best? Why?
3. You gave one solution for each part of Problem 1. Now, for each problem indicated below, give a different solution method.

1(b)

$$
\frac{5}{8}+\frac{5}{8}+\frac{3}{8}
$$

1(e) $\quad \frac{5}{7}+\frac{1}{7}+\frac{4}{7}$

1(h) $\quad 1 \frac{3}{5}-\frac{4}{5}-\frac{1}{5}$

Name \qquad Date \qquad

Use the RDW process to solve.

1. Isla walked $\frac{3}{4}$ mile each way to and from school on Wednesday. How many miles did Isla walk that day?
2. Zach spent $\frac{2}{3}$ hour reading on Friday and $1 \frac{1}{3}$ hours reading on Saturday. How much more time did he read on Saturday than on Friday?
3. Mrs. Cashmore bought a large melon. She cut a piece that weighed $1 \frac{1}{8}$ pounds and gave it to her neighbor. The remaining piece of melon weighed $\frac{6}{8}$ pound. How much did the whole melon weigh?
4. Ally's little sister wanted to help her make some oatmeal cookies. First, she put $\frac{5}{8}$ cup of oatmeal in the bowl. Next, she added another $\frac{5}{8}$ cup of oatmeal. Finally, she added another $\frac{5}{8}$ cup of oatmeal. How much oatmeal did she put in the bowl?
5. Marcia baked 2 pans of brownies. Her family ate $1 \frac{5}{6}$ pans. What fraction of a pan of brownies was left?
6. Joanie wrote a letter that was $1 \frac{1}{4}$ pages long. Katie wrote a letter that was $\frac{3}{4}$ page shorter than Joanie's letter. How long was Katie's letter?

Name \qquad Date \qquad

1. Use a tape diagram to represent each addend. Decompose one of the tape diagrams to make like units. Then, write the complete number sentence.
a. $\frac{1}{3}+\frac{1}{6}$
b. $\frac{1}{2}+\frac{1}{4}$
C. $\frac{3}{4}+\frac{1}{8}$
d. $\frac{1}{4}+\frac{5}{12}$
e. $\frac{3}{8}+\frac{1}{2}$
f. $\frac{3}{5}+\frac{3}{10}$
2. Estimate to determine if the sum is between 0 and 1 or 1 and 2 . Draw a number line to model the addition. Then, write a complete number sentence. The first one has been completed for you.
a. $\frac{1}{3}+\frac{1}{6} \quad \frac{2}{6}+\frac{1}{6}=\frac{3}{6}$
b. $\frac{3}{5}+\frac{7}{10}$

C. $\frac{5}{12}+\frac{1}{4}$
d. $\frac{3}{4}+\frac{5}{8}$
e. $\frac{7}{8}+\frac{3}{4}$
f. $\frac{1}{6}+\frac{5}{3}$
3. Solve the following addition problem without drawing a model. Show your work.

$$
\frac{5}{6}+\frac{1}{3}
$$

Name \qquad Date \qquad

1. Draw a tape diagram to represent each addend. Decompose one of the tape diagrams to make like units. Then, write a complete number sentence. Use a number bond to write each sum as a mixed number.
a. $\frac{7}{8}+\frac{1}{4}$
b. $\frac{4}{8}+\frac{2}{4}$
C. $\frac{4}{6}+\frac{1}{2}$
d. $\frac{3}{5}+\frac{8}{10}$
2. Draw a number line to model the addition. Then, write a complete number sentence. Use a number bond to write each sum as a mixed number.
a. $\frac{1}{2}+\frac{5}{8}$
b. $\frac{3}{4}+\frac{3}{8}$
C. $\frac{4}{10}+\frac{4}{5}$
d. $\frac{1}{3}+\frac{5}{6}$
3. Solve. Write the sum as a mixed number. Draw a model if needed.
a. $\frac{1}{2}+\frac{6}{8}$
b. $\frac{7}{8}+\frac{3}{4}$
C. $\frac{5}{6}+\frac{1}{3}$
d. $\frac{9}{10}+\frac{2}{5}$
e. $\frac{4}{12}+\frac{3}{4}$
f. $\frac{1}{2}+\frac{5}{6}$
g. $\frac{3}{12}+\frac{5}{6}$
h. $\frac{7}{10}+\frac{4}{5}$

Section One: Student Notes and Exit Tickets
 To complete with all digital lessons

Mission 6

Decimal Fractions

Name: \qquad

© 2019 Zearn

Portions of this work, Zearn Math, are derivative of Eureka Math and licensed by Great Minds. © 2019 Great Minds. All rights reserved. Eureka Math was created by Great Minds in partnership with the New York State Education Department and also released as EngageNY.

Zearn ${ }^{\circledR}$ is a registered trademark.

Printed in the U.S.A.

This book may be purchased from the publisher at zearn.org.

Fourth Edition

Lesson 1 G:4 M:6

EXIT TICKET

Name: \qquad Date:
Complete: \square
\square
\qquad

1. Fill in the blank to make the sentence true in both fraction form and decimal form.
a. $\frac{9}{10} \mathrm{~cm}+$ \qquad $\mathrm{cm}=1 \mathrm{~cm}$
0.9 cm + \qquad $\mathrm{cm}=1.0 \mathrm{~cm}$
b. $\frac{4}{10} \mathrm{~cm}+$ \qquad $\mathrm{cm}=1 \mathrm{~cm}$
0.4 cm + \qquad $\mathrm{cm}=1.0 \mathrm{~cm}$
2. Match each amount expressed in unit form to its fraction form and decimal form.

0.3

Lesson 2 G:4 M:6
 Shaded Fractions, Shaded Decimals
 ZEARN STUDENT NOTES

Name: \qquad Date:

Complete: \square

You will need a centimeter ruler for this lesson.
1 Using the centimeter ruler, draw a line that measures 2 cm . Then, extend the line by $\frac{6}{10} \mathrm{~cm}$.

I Fraction equation: \qquad cm + \qquad $\mathrm{cm}=$ \qquad cm

Decimal equation: \qquad cm + \qquad $\mathrm{cm}=$ \qquad cm
I

Shade to represent $3 \frac{2}{10}$ using the area models.
(

Lesson 2 G:4 M:6

EXIT TICKET

Name:

Date:

Complete: \square
Class: \qquad

1. For the length given below, draw a line segment to match.

Express the measurement as an equivalent mixed number.

2. Write the following in decimal form and as a mixed number. Shade the area model to match.
a. 3 ones and 7 tenths = \qquad $=$

b. $\frac{24}{10}=$ \qquad $=$

How much more is needed to get to 5 ? \qquad

Lesson 3

 G:4 M:6
Equivalence Extravaganza

ZEARN STUDENT NOTES

Name: \qquad Date:

Class:
\qquad
\qquad

1
Write the value represented by these place value disks in unit form and standard form. Then solve.

Lesson 3 G:4 M:6

EXIT TICKET

Name: \qquad Date:
Complete:
 Class:
\qquad

1. Circle groups of tenths to make as many ones as possible.

How many tenths in all?	Write and draw the same number using ones and tenths.
(0.1)(0.1)(0.1)(0.1).1) (0.1)(0.1)(0.1) (0.1) (0.1)(0.1)(0.1).1) (0.1)(0.1)	
There are ___ tenths.	Decimal Form:
	How much more is needed to get to 2?

2. Complete the chart.

Point	Number Line	Decimal Form	Mixed Number (ones and fractions form)	Expanded Form (Fraction or decimal form)	How much to get to the next one?
a.	H1+1,1+1		$12 \frac{9}{10}$		
b.	1111111	70.7			

Lesson 4 G:4 M:6

From Tenths to Hundredths ZEARN STUDENT NOTES

Name: \qquad Date:
Complete: \square

Shade in the amount shown. Then, write the equivalent decimal.

Lesson 4 G:4 M:6

EXIT TICKET

Name: \qquad Date:
Complete: \square
\qquad

1. Shade in the amount shown. Then, write the equivalent decimal.

$$
1 \text { meter }
$$

$=$ \qquad
2. Draw a number bond, pulling out the tenths from the hundredths. Write the total as the equivalent decimal.

Lesson 5 G:4 M:6

EXIT TICKET

Name: \qquad Date:
Complete:
\square
\qquad

1. Use both tenths and hundredths number disks to represent each fraction. Write the equivalent decimal, and fill in the blanks to represent each in unit form.

Lesson 6 G:4 M:6

Zoom! Plot!

ZEARN STUDENT NOTES

Name: \qquad Date:
Complete: \square
Class: \qquad

1 Show $3 \frac{46}{100}$ on the number line.

Lesson 6 G:4 M:6

EXIT TICKET

Name: \qquad Date: \qquad
Complete: \square
Class: \qquad

1. Estimate to locate the points on the number lines. Mark the point, and label it as a decimal.
a. $7 \frac{20}{100}$
b. $1 \frac{75}{100}$

2. Write the equivalent fraction and decimal for each number.
a. 8 ones 24 hundredths
b. 2 ones 6 hundredths

Lesson 7
G:4 M:6

Expand
ZEARN STUDENT NOTES

Name: \qquad Date:
Class:

Write 340.83 in expanded form using fraction notation and decimal notation.

Lesson 7 G:4 M:6

EXIT TICKET

Name: \qquad Date:
Complete: \square Class: \qquad

1. Use the place value chart to answer the following questions. Express the value of the digit in unit form.

hundreds	tens	ones	tenths	hundredths
8	2	7	6	4

a. The digit \qquad is in the hundreds place. It has a value of
\qquad .
b. The digit \qquad is in the tens place. It has a value of
\qquad .
c. The digit \qquad is in the tenths place. It has a value of
\qquad .
d. The digit \qquad is in the hundredths place. It has a value of
\qquad .
2. Complete the following chart.

Fraction	Expanded Form		Decimal
	Fraction Notation	Decimal Notation	
$422 \frac{8}{100}$			
	$(3 \times 100)+\left(9 \frac{1}{10}\right)+\left(2 \frac{1}{100}\right)$		

Lesson 8 G:4 M:6

EXIT TICKET

Name: \qquad Date:
Complete: \square
\qquad

1. Draw number disks to represent the following decomposition.
a. 3 ones 2 tenths = \qquad tenths

ones	\cdot	tenths	hundredths

b. 3 ones 2 tenths = \qquad hundredths
2. Decompose the units.
a. $2.6=$ \qquad tenths
b. $6.1=$ \qquad hundredths

Lesson 9 G:4 M:6

PVC, Easy as 0.1, 0.2, 0.3 ZEARN STUDENT NOTES

Name: \qquad Date:

Class:
\qquad
Complete: \square \qquad

Shade the tape diagrams to represent the length of each shaded meter stick. Then, write a sentence to compare the lengths.

2
Record the weight of each object in the place value chart. Then, find the lightest object.

	ones	tenths	hundredths
Orange			
Apple			
Book			

The \qquad weighs less than the \qquad and the \qquad .

Record the volume of each graduated cylinder in the place value chart. Then, order the cylinders from least volume to greatest volume.

ones	tenths	hundredths
A		
C		

Lesson 9 G:4 M:6

EXIT TICKET

Name: \qquad Date:
Complete: \square
\qquad

1. Doug measures the lengths of three strings and shades tape diagrams to represent the length of each string, as shown below.
a. Express, in decimal form, the length of each string.

b. List the lengths of the strings in order from greatest to least.
2. Compare the values below using $>,<$, or $=$.
a. $0.8 \mathrm{~kg} \bigcirc 0.6 \mathrm{~kg}$
b. $0.36 \mathrm{~kg} \bigcirc 0.5 \mathrm{~kg}$
c. $0.4 \mathrm{~kg} \bigcirc 0.47 \mathrm{~kg}$

Lesson 10 G:4 M:6
 EXIT TICKET

Name: \qquad
Complete: \square

Date: \qquad Class: \qquad

1. Ryan says that 0.6 is less than 0.60 because it has fewer digits. Jessie says that 0.6 is greater than 0.60 . Who is right? Why? Use the area models below to help explain your answer.
0.6 \qquad 0.60

2. Use the symbols <, >, or = to compare.
a. 3.9
 3.09
b. $2.4 \bigcirc 2$ ones and 4 hundredths
c. $7.84 \bigcirc 78$ tenths and 4 hundredths

Lesson 12 Add Your Understanding
 ZEARN STUDENT NOTES

Name: \qquad
Complete: \square

Date:
Class: \qquad

1 Solve $\frac{3}{4}+\frac{1}{2}$.

Solve $\frac{6}{10}+\frac{57}{100}$.
Write your answer as a decimal.

3 Model $\frac{9}{10}+\frac{64}{100}$ using the area models.

SHOW YOUR WORK						
			$\cdots \square$		TD	- 1.0
			-		-	
					-	
					-	
						-

Lesson 12 G:4 M:6

EXIT TICKET

Name:

Date:

\qquad
Complete: \square
Class: \qquad

1. Complete the number sentence by expressing each part using hundredths. Use the place value chart to model.

ones	\cdot	tenths	hundredths

1 tenth +9 hundredths = \qquad hundredths
2. Find the sum. Write your answer as a decimal.

$$
\frac{4}{10}+\frac{73}{100}
$$

Lesson 13 Decimal + Decimal
 ZEARN STUDENT NOTES

Name:
Date:
Complete: \square
Class: \qquad

Solve $0.30+0.5$
Express your answer as a decimal number.
 Rewrite $5.6+4.53$ as the sum of two mixed numbers. Solve. Then, rewrite your number sentence in decimal form.

1	SHOW YOUR WORK	
1		
1		1
1		I
I		I
1		I
1		1
1		1
I		'
I		I
1		1
1		1
1		I
I		I
1		1
1		I
'		'
I		I
I		1
1		I
1		I
1		I
I		I
I		I
	- - - - - - - - -	- 」
1	DECIMAL FORM	I
I		I
1		1
I		1
I		I
1		1
1		1
1		1

Lesson 13 G:4 M:6

EXIT TICKET

Name: \qquad Date:
Complete: \square
\square
\qquad

1. Solve by rewriting the number sentence in fraction form. After solving, rewrite the complete number sentence in decimal form.

Lesson 14 G:4 M:6
 For Good Measure
 ZEARN STUDENT NOTES

Name: \qquad Date: \qquad
\qquad A team of three friends ran a relay race. Camille ran the fastest, measuring 29.2 seconds. Marco was 1.89 seconds slower than Camille. Laina ran 0.9 seconds slower than Marco.

What was the team's total time for the race?

Lesson 14 G:4 M:6

EXIT TICKET

Name: \qquad Date:
Complete: \square
\qquad

1. Elise ran 6.43 kilometers on Saturday and 5.6 kilometers on Sunday.

How many total kilometers did she run on Saturday and Sunday?

Lesson 15
 G:4 M:6
 Money, Money, Money!
 ZEARN STUDENT NOTES

Name: \qquad Date:
Complete: \square
Class:

Give the total amount of money in fraction and decimal form.

3 quarters and 4 dimes

Lesson 15 G:4 M:6

EXIT TICKET

Name: \qquad Date:
Complete: \square
\square
\qquad

1. Solve. Give the total amount of money in fraction and decimal form.
a. 2 quarters and 3 dimes
b. 1 quarter, 7 dimes, and 23 pennies
2. Solve. Express the answer as a decimal.

2 dollars 1 quarter 14 pennies +3 dollars 2 quarters 3 dimes
I I
I I
I I
I I
I II I
I I
I |
I I
I I
I I
।

Lesson 16 Mo' Money, Mo' Math G:4 M:6
 ZEARN STUDENT NOTES

Name:
Date:
Complete: \square
Class:

1 Jose wants to buy a pen for $\$ 2.70$, a box of pencils for $\$ 3.39$ and an eraser for $\$ 1.86$.

How much will he spend in total?

Jose has 6 ones, 3 quarters, 2 dimes, and 9 pennies.
and eraser?

Lesson 16 G:4 M:6

EXIT TICKET

Name: \qquad Date:
Complete: \square
\qquad

Use the RDW process to solve. Write your answer as a decimal.

1. David's mother told him that he could keep all the money he found under the sofa cushions in their house. David found 6 quarters, 4 dimes, and 26 pennies.

How much money did David find altogether?

Mission 6: Decimal Fractions

Section Two: Problem Sets and Homework To complete if internet access is not available

Name \qquad Date \qquad

1. Shade the first 7 units of the tape diagram. Count by tenths to label the numberline using a fraction and a decimal foreach point. Circle the decimal that represents the shaded part.

2. Write the total amount of water in fraction form and decimal form. Shade the last bottle to show the correct amount.

3. Write the total weight of the food on each scale in fraction form or decimal form.

his work is licensed under
4. Write the length of the bug in centimeters. (The drawing is not to scale.)

5. Fill in the blank to make the sentence true in both fraction form and decimal form.
a. $\frac{8}{10} \mathrm{~cm}+$ \qquad $\mathrm{cm}=1 \mathrm{~cm}$
$0.8 \mathrm{~cm}+$ \qquad $\mathrm{cm}=1.0 \mathrm{~cm}$
b. $\frac{2}{10} \mathrm{~cm}+$ \qquad $\mathrm{cm}=1 \mathrm{~cm}$
$0.2 \mathrm{~cm}+$ \qquad $\mathrm{cm}=1.0 \mathrm{~cm}$
c. $\frac{6}{10} \mathrm{~cm}+$ \qquad $\mathrm{cm}=1 \mathrm{~cm}$
$0.6 \mathrm{~cm}+$ \qquad $\mathrm{cm}=1.0 \mathrm{~cm}$
6. Match each amount expressed in unit form to its equivalent fraction and decimal forms.
 into tenths.

Name \qquad Date \qquad

1. For each length given below, draw a line segment to match. Express each measurement as an equivalent mixed number.
a. $\quad 2.6 \mathrm{~cm}$
b. 3.4 cm
c. $\quad 3.7 \mathrm{~cm}$
d. 4.2 cm
e. 2.5 cm
2. Write the following as equivalent decimals. Then, model and rename the number as shown below.
a. 2 ones and 6 tenths $=$ \qquad

$2 \frac{6}{10}=2+\frac{6}{10}=2+0.6=2.6$
b. 4 ones and 2 tenths $=$ \qquad

c. $3 \frac{4}{10}=$ \qquad

d. $2 \frac{5}{10}=$

How much more is needed to get to 5 ?
e. $\frac{37}{10}=$ \qquad

How much more is needed to get to 5 ?

Name \qquad Date \qquad

1. Circle groups of tenths to make as many ones as possible.

2. Draw disks to represent each number using tens, ones, and tenths. Then, show the expanded form of the number in fraction form and decimal form as shown. The first one has been completed for you.
a. 4 tens 2 ones 6 tenths
b. 1 ten 7 ones 5 tenths

Fraction Expanded Form
$(4 \times 10)+(2 \times 1)+\left(6 \times \frac{1}{10}\right)=42 \frac{6}{10}$
Decimal Expanded Form
$(4 \times 10)+(2 \times 1)+(6 \times 0.1)=42.6$

c. 2 tens 3 ones 2 tenths	d. 7 tens 4 ones 7 tenths

3. Complete the chart.

Point	Number Line	Decimal Form	Mixed Number (ones and fraction form)	Expanded Form (fraction or decimal form)	How much to get to the next one?
a.	H\|				

Name \qquad Date \qquad

1. a. What is the length of the shaded part of the meter stick in centimeters?

b. What fraction of a meter is 1 centimeter?

d. In decimal form, express the length of the shaded portion of the meter stick.
e. What fraction of a meter is 10 centimeters?
2. Fill in the blanks.
a. $\quad 1$ tenth $=$ \qquad hundredths
b. $\frac{1}{10} \mathrm{~m}=\frac{}{100} \mathrm{~m}$
C. $\frac{2}{10} m=\frac{20}{m}$
3. Use the model to add the shaded parts as shown. Write a number bond with the total written in decimal form and the parts written as fractions. The first one has been done for you.
a.

$$
\frac{1}{10} m+\frac{3}{100} m=\frac{13}{100} m=0.13 m
$$

b.

1 meter
c.

4. On each meter stick, shade in the amount shown. Then, write the equivalent decimal.
a. $\frac{8}{10} \mathrm{~m}$
1 meter

b. $\frac{7}{100} \mathrm{~m}$
C. $\frac{19}{100} \mathrm{~m}$

5. Draw a number bond, pulling out the tenths from the hundredths as in Problem 3. Write the total as the equivalent decimal.
a. $\frac{19}{100} \mathrm{~m}$
b. $\frac{28}{100} \mathrm{~m}$
C. $\frac{77}{100}$
d. $\frac{94}{100}$

Name \qquad Date \qquad

1. Find the equivalent fraction using multiplication or division. Shade the area models to show the equivalency. Recordit as a decimal.
a. $\frac{3 \times}{10 \times}=\frac{}{100}$
b. $\frac{50 \div}{100 \div}=\frac{}{10}$

2. Complete the number sentences. Shade the equivalent amount on the area model, drawing horizontal lines to make hundredths.
a. 37 hundredths = \qquad tenths + \qquad hundredths

Fraction form: \qquad

Decimal form: \qquad

b. 75 hundredths = \qquad tenths + \qquad hundredths

Fraction form: \qquad

Decimal form: \qquad

3. Circle hundredths to compose as many tenths as you can. Complete the number sentences. Represent each with a number bond as shown.

\qquad hundredths= \qquad tenth + \qquad hundredths and place value disks.
b.

\qquad hundredths = \qquad tenths + \qquad hundredths
4. Use both tenths and hundredths place value disks to represent each number. Write the equivalent number in decimal, fraction, and unit form.

Name \qquad

Date

\qquad

1. Shade the area models to represent the number, drawing horizontal lines to make hundredths as needed. Locate the corresponding point on the number line. Label with a point, and record the mixed number as a decimal.
a. $1 \frac{15}{100}=$

2. Estimate to locate the points on the numberlines.
a. $2 \frac{95}{100}$
b. $7 \frac{52}{100}$
 units of ones, tenths, and hundredths in fraction and decimal forms.
3. Write the equivalent fraction and decimal for each of the following numbers.

a. 1 one 2 hundredths	b. 1 one 17 hundredths
c. 2 ones 8 hundredths	d. 2 ones 27 hundredths
e. 4 ones 58 hundredths	f. 7 ones 70 hundredths

4. Draw lines from dot to dot to match the decimal form to both the unit form and fraction form. All unit forms and fractions have at least one match, and some have more than one match.

Modified from original

Name \qquad Date \qquad

1. Write a decimal number sentence to identify the total value of the place value disks.
a.

2 tens
5 tenths
3 hundredths
\qquad
b.

5 hundreds
4 hundredths
\qquad
\qquad $=$ \qquad
2. Use the place value chart to answer the following questions. Express the value of the digit in unit form.

hundreds	tens	ones	.	tenths	hundredths
4	1	6	8	3	

a. The digit \qquad is in the hundreds place. It has a value of \qquad .
b. The digit \qquad is in the tens place. It has a value of \qquad .
c. The digit \qquad is in the tenths place. It has a value of \qquad .
d. The digit \qquad is in the hundredths place. It has a value of \qquad -.

hundreds	tens	ones	tenths	hundredths
5	3	2	1	6

e. The digit \qquad is in the hundreds place. It has a value of \qquad .
f. The digit \qquad is in the tens place. It has a value of \qquad .
g. The digit \qquad is in the tenths place. It has a value of \qquad .
h. The digit \qquad is in the hundredths place. It has a value of \qquad .
3. Write each decimal as an equivalent fraction. Then, write each number in expanded form, using both decimal and fraction notation. The first one has been done foryou.

Decimal and Fraction Form	Expanded Form	
	Fraction Notation	Decimal Notation
$15.43=15 \frac{43}{100}$	$\begin{gathered} (1 \times 10)+(5 \times 1)+\left(4 \times \frac{1}{10}\right)+\left(3 \times \frac{1}{100}\right) \\ 10+5+\frac{4}{10}+\frac{3}{100} \end{gathered}$	$\begin{gathered} (1 \times 10)+(5 \times 1)+(4 \times 0.1)+(3 \times 0.01) \\ 10+5+0.4+0.03 \end{gathered}$
$21.4=$		
$38.09=$		
$50.2=$		
$301.07=$		
$620.80=$		
$800.08=$		

Name \qquad Date \qquad

1. Use the area model to represent $\frac{250}{100}$. Complete the number sentence.
a. $\frac{250}{100}=$ \qquad tenths $=$ \qquad ones \qquad tenths = \qquad

b. In the space below, explain how you determined your answer to part (a).
2. Draw place value disks to represent the following decompositions:

2 ones $=$ \qquad tenths

2 tenths = \qquad hundredths

ones	\cdot	tenths	hundredths

1 one 3 tenths \qquad tenths

ones	\cdot	tenths	hundredths

2 tenths 3 hundredths = \qquad hundredths

ones	.	tenths	hundredths

ones	\cdot	tenths	hundredths

3. Decompose the units to represent each number as tenths.
a. $1=$ \qquad tenths
b. $2=$ \qquad tenths
c. $1.7=$ \qquad tenths
d. $2.9=$ \qquad tenths
e. $10.7=$ \qquad tenths
f. $20.9=$ \qquad tenths
4. Decompose the units to represent each number as hundredths.
a. $1=$ \qquad hundredths
b. $2=$ \qquad hundredths
c. $1.7=$ \qquad hundredths
d. $2.9=$ \qquad hundredths
e. $10.7=$ \qquad hundredths
f. $20.9=$ \qquad hundredths
5. Complete the chart. The first one has been done foryou.

Decimal	Mixed Number	Tenths	Hundredths
2.1	$2 \frac{1}{10}$	21 tenths $\frac{21}{10}$	210 hundredths $\frac{210}{100}$
4.2			
8.4			
10.2			
75.5			

Name \qquad Date \qquad

1. Express the lengths of the shaded parts in decimal form. Write a sentence that compares the two lengths. Use the expression shorter than or longer than in your sentence.
a.

b.

c. List all four lengths from least to greatest.
2. a. Examine the mass of each item as shown below on the 1-kilogram scales. Put an X over the items that are heavier than the avocado.

0.2 kg

0.12 kg

0.6 kg

0.61 kg
b. Express the mass of each item on the place value chart.

Mass of Fruit (kilograms)

Fruit	ones	.	tenths	hundredths
avocado				
apple				
bananas				
grapes				

c. Complete the statements below using the words heavier than or lighter than in your statements.

The avocado is \qquad the apple.

The bunch of bananas is \qquad the bunch of grapes.
3. Record the volume of water in each graduated cylinder on the place value chart below.

B

0.3 liter

Volume of Water (liters)

Cylinder	ones	.	tenths	hundredths
A				
B				
C				
D				
E				
F				

a. $\quad 0.9 \mathrm{~L}$ \qquad 0.6 L
b. $\quad 0.48 \mathrm{~L}$ \qquad 0.6 L
c. $\quad 0.3 \mathrm{~L}$ \qquad 0.19 L
d. Write the volume of water in each graduated cylinder in order from least to greatest.

Name \qquad Date \qquad

1. Shade the area models below, decomposing tenths as needed, to represent the pairs of decimal numbers. Fill in the blank with $<,>$, or = to compare the decimal numbers.
a. 0.23 \qquad 0.4

b. 0.6 \qquad 0.38

C. $\quad 0.09$ \qquad 0.9

d. 0.70 \qquad 0.7

2. Locate and label the points for each of the decimal numbers on the number line. Fill in the blank with $<,>$, or = to compare the decimal numbers.
a. 10.03 \qquad 10.3

b. 12.68 \qquad 12.8

3. Use the symbols $<,>$, or $=$ to compare.
a. $\quad 3.42$ \qquad 3.75
b. 4.21 \qquad 4.12
C. $\quad 2.15$ \qquad 3.15
d. 4.04 \qquad 6.02
e. 12.7 \qquad 12.70
f. 1.9 \qquad 1.21
4. Use the symbols <, $>$, or $=$ to compare. Use pictures as needed to solve.
a. 23 tenths \qquad 2.3
b. 1.04 \qquad 1 one and 4 tenths
c. $\quad 6.07$ \qquad $6 \frac{7}{10}$
d. $0.45=\frac{45}{10}$
e. $\frac{127}{100} 1.72$
f. 6 tenths \qquad 66 hundredths

Name \qquad Date \qquad

1. Complete the number sentence by expressing each part using hundredths. Model using the place value chart, as shown in part (a).

a. 1 tenth +5 hundredths $=$ \qquad hundredths

b. 2 tenths +1 hundredth $=$ \qquad hundredths

ones	\bullet	tenths	hundredths

c. 1 tenth +12 hundredths $=$ \qquad hundredths
2. Solve by converting all addends to hundredths before solving.
a. 1 tenth +3 hundredths $=$ \qquad hundredths +3 hundredths $=$ \qquad hundredths
b. 5 tenths +12 hundredths $=$ \qquad hundredths + \qquad hundredths = \qquad hundredths
c. 7 tenths +27 hundredths $=$ \qquad hundredths + \qquad hundredths= \qquad hundredths
d. 37 hundredths +7 tenths $=$ \qquad hundredths + \qquad hundredths = \qquad hundredths
3. Find the sum. Convert tenths to hundredths as needed. Write your answer as a decimal.
a. $\frac{2}{10}+\frac{8}{100}$
b. $\frac{13}{100}+\frac{4}{10}$
c. $\frac{6}{10}+\frac{39}{100}$
d. $\frac{70}{100}+\frac{3}{10}$
4. Solve. Write your answer as a decimal.
a. $\frac{9}{10}+\frac{42}{100}$
b. $\frac{70}{100}+\frac{5}{10}$
c. $\frac{68}{100}+\frac{8}{10}$
d. $\frac{7}{10}+\frac{87}{1 \mathrm{v} 00}$
5. Beaker A has $\frac{63}{100}$ liter of iodine. It is filled the rest of the way with water up to 1 liter. Beaker B has $\frac{4}{10}$ liter of iodine. It is filled the rest of the way with water up to 1 liter. If both beakers are emptied into a large beaker, how much iodine does the large beaker contain?

Name \qquad Date \qquad

1. Solve. Convert tenths to hundredths before finding the sum. Rewrite the complete number sentence in decimal form. Problems 1(a) and 1(b) are partially completed foryou.

a. $2 \frac{1}{10}+\frac{3}{100}=2 \frac{10}{100}+\frac{3}{100}=\ldots$	
$2.1+0.03=$	b. $2 \frac{1}{10}+5 \frac{3}{100}=2 \frac{10}{100}+5 \frac{3}{100}=\underline{Z}$
c. $3 \frac{24}{100}+\frac{7}{10}$	d. $3 \frac{24}{100}+8 \frac{7}{10}$

2. Solve. Then, rewrite the complete number sentence in decimal form.

a. $6 \frac{9}{10}+1 \frac{10}{100}$	b. $9 \frac{9}{10}+2 \frac{45}{100}$
c. $2 \frac{4}{10}+8 \frac{90}{100}$	d. $6 \frac{37}{100}+7 \frac{7}{10}$

3. Solve by rewriting the number sentence in fraction form. After solving, rewrite the complete number sentence in decimal form.

a. $6.4+5.3$	b. $6.62+2.98$	
c. $2.1+0.94$	d. $2.1+5.94$	
e. $5.7+4.92$	f. $5.68+4.9$	
g. $4.8+3.27$		

Name \qquad Date \qquad

1. Barrel A contains 2.7 liters of water. Barrel B contains 3.09 liters of water. Together, how much water do the two barrels contain?
2. Alissa ran a distance of 15.8 kilometers one week and 17.34 kilometers the following week. How far did she run in the two weeks?
3. An apple orchard sold 140.5 kilograms of apples in the morning and 15.85 kilograms more apples in the afternoon than in the morning. How many total kilograms of apples were sold that day?
4. A team of three ran a relay race. The final runner's time was the fastest, measuring 29.2 seconds. The middle runner's time was 1.89 seconds slower than the final runner's. The starting runner's time was 0.9 seconds slower than the middle runner's. What was the team's total time for the race?

Name \qquad

1. 100 pennies $=\$$ \qquad $100 \Phi=\frac{}{\mathbf{1 0 0}}$ dollar
2. 1 penny = \$ \qquad .
$1 \phi=\frac{}{\mathbf{1 0 0}}$ dollar
3. 6 pennies $=\$$ \qquad . \qquad $6 \Phi=\frac{}{100}$ dollar
4. 10 pennies $=\$$
\qquad $10 \not \subset=\frac{}{100}$ dollar

Date

\qquad

\qquad
\qquad -

5. 26 pennies $=\$$ \qquad $26 \not \subset=\frac{}{100}$ dollar

6. 10 dimes = \$ \qquad
\qquad $100 \not \subset=\frac{}{10}$ dollar
7. 1 dime = \$ \qquad .
$10 \Phi=\frac{}{10}$ dollar
8. 3 dimes $=\$$ \qquad $30 \Phi=\frac{}{10}$ dollar
9. 5 dimes $=\$$ \qquad $50 \not \subset=\frac{}{10}$ dollar
10. 6 dimes $=\$$ \qquad
\qquad $60 \not \subset=\frac{}{10}$ dollar
11. 4 quarters $=\$$ \qquad $100 \Phi=\frac{}{100}$ dollar
12. 1 quarter $=\$$ \qquad $25 \not \subset=\frac{}{100}$ dollar
13. 2 quarters $=\$$ \qquad $50 \neq \frac{}{100}$ dollar
14. 3 quarters = \$ \qquad $75 \not \subset=\frac{}{\mathbf{1 0 0}}$ dollar

Solve. Give the total amount of money in fraction and decimal form.
15. 3 dimes and 8 pennies
16. 8 dimes and 23 pennies
17. 3 quarters 3 dimes and 5 pennies
18. 236 cents is what fraction of a dollar?

Solve. Express the answeras a decimal.
19. 2 dollars 17 pennies +4 dollars 2 quarters
20. 3 dollars 8 dimes +1 dollar 2 quarters 5 pennies
21. 9 dollars 9 dimes +4 dollars 3 quarters 16 pennies

Name \qquad Date \qquad

Use the RDW process to solve. Write your answer as a decimal.

1. Miguel has 1 dollar bill, 2 dimes, and 7 pennies. John has 2 dollar bills, 3 quarters, and 9 pennies. How much money do the two boys have in all?
2. Suilin needs 7 dollars 13 cents to buy a book. In herwallet, she finds 3 dollar bills, 4 dimes, and 14 pennies. How much more money does Suilin need to buy the book?
3. Vanessa has 6 dimes and 2 pennies. Joachim has 1 dollar, 3 dimes, and 5 pennies. Jimmy has 5 dollars and 7 pennies. They want to put their money together to buy a game that costs $\$ 8.00$. Do they have enough money to buy the game? If not, how much more money do they need?
4. A pen costs $\$ 2.29$. A calculator costs 3 times as much as a pen. How much do a pen and a calculator cost together?
5. Krista has 7 dollars and 32 cents. Malory has 2 dollars and 4 cents. How much money does Krista need to give Malory so that each of them has the same amount of money?

Start of Homework section for Mission 6

Name \qquad Date \qquad

Shade the first 4 units of the tape diagram. Count by tenths to label the numberline using a fraction and a decimal foreach point. Circle the decimal that represents the shaded part.

2. Write the total amount of water in fraction form and decimal form. Shade the last bottle to show the correct amount.

3. Write the total weight of the food on each scale in fraction form or decimal form.
 into tenths.
his work is licensed under
4. Write the length of the bug in centimeters. (The drawing is not to scale.)

5. Fill in the blank to make the sentence true in both fraction and decimal form.
a. $\frac{4}{10} \mathrm{~cm}+$ \qquad $\mathrm{cm}=1 \mathrm{~cm}$
$0.4 \mathrm{~cm}+$ \qquad $\mathrm{cm}=1.0 \mathrm{~cm}$
b. $\frac{3}{10} \mathrm{~cm}+$ \qquad $\mathrm{cm}=1 \mathrm{~cm}$
$0.3 \mathrm{~cm}+$ \qquad $\mathrm{cm}=1.0 \mathrm{~cm}$
c. $\frac{8}{10} \mathrm{~cm}+$ \qquad $\mathrm{cm}=1 \mathrm{~cm}$
$0.8 \mathrm{~cm}+$ \qquad $\mathrm{cm}=1.0 \mathrm{~cm}$
6. Match each amount expressed in unit form to its equivalent fraction and decimal.
 into tenths.

Name \qquad Date \qquad

1. For each length given below, draw a line segment to match. Express each measurement as an equivalent mixed number.
a. $\quad 2.6 \mathrm{~cm}$
b. 3.5 cm
C. $\quad 1.7 \mathrm{~cm}$
d. 4.3 cm
e. 2.2 cm
2. Write the following in decimal form. Then, model and rename the number as shown below.
a. 2 ones and 4 tenths $=$ \qquad

$$
2 \frac{4}{10}=2+\frac{4}{10}=2+0.4=2.4
$$ fractions greater than 1 and decimal numbers.

b. 3 ones and 8 tenths $=$ \qquad

c. $4 \frac{1}{10}=$ \qquad

d. $1 \frac{4}{10}=$ \qquad

How much more is needed to get to 5 ? \qquad
e. $\frac{33}{10}=$ \qquad

How much more is needed to get to 5 ? \qquad fractions greater than 1 and decimal numbers.

Name \qquad Date \qquad

1. Circle groups of tenths to make as many ones as possible.

a. How many tenths in all? There are \qquad tenths.	Write and draw the same number using ones and tenths. Decimal Form: \qquad How much more is needed to get to 2 ? \qquad
b. How many tenths in all? There are \qquad tenths.	Write and draw the same number using ones and tenths. Decimal Form: \qquad How much more is needed to get to 3 ? \qquad

2. Draw disks to represent each number using tens, ones, and tenths. Then, show the expanded form of the number in fraction form and decimal form as shown. The first one has been completed for you.
a. 3 tens 4 ones 3 tenths
b. 5 tens 3 ones 7 tenths

Fraction Expanded Form
$(3 \times 10)+(4 \times 1)+\left(3 \times \frac{1}{10}\right)=34 \frac{3}{10}$

Decimal Expanded Form
$(3 \times 10)+(4 \times 1)+(3 \times 0.1)=34.3$
c. 3 tens 2 ones 3 tenths
d. 8 tens 4 ones 8 tenths
3. Complete the chart.

Point	Number Line	Decimal Form	Mixed Number (ones and fraction form)	Expanded Form (fraction or decimal form)	How much to get to the next one?
a.	N				

Name \qquad Date \qquad

1. a. What is the length of the shaded part of the meterstick in centimeters?

b. What fraction of a meter is 3 centimeters?
c. In fraction form, express the length of the shaded portion of the meter stick.

d. In decimal form, express the length of the shaded portion of the meter stick.
e. What fraction of a meteris 30 centimeters?
2. Fill in the blanks.
a. 5 tenths $=$ \qquad hundredths
b. $\frac{5}{10} \mathrm{~m}=\frac{}{100} \mathrm{~m}$
C. $\frac{4}{10} m=\frac{40}{} m$
3. Use the model to add the shaded parts as shown. Write a number bond with the total written in decimal form and the parts written as fractions. The first one has been done for you.

0.13

$\frac{1}{10} m+\frac{3}{100} m=\frac{13}{100} m=0.13 m$ Representand counthundredths.
b.

1 meter
c.

4. On each meter stick, shade in the amount shown. Then, write the equivalent decimal.
a. $\frac{9}{10} \mathrm{~m}$

b. $\frac{15}{100} \mathrm{~m}$

1 meter

c. $\frac{41}{100} \mathrm{~m}$

5. Draw a number bond, pulling out the tenths from the hundredths, as in Problem 3 of the Homework. Write the total as the equivalent decimal.
a. $\frac{23}{100} \mathrm{~m}$
b. $\frac{38}{100} \mathrm{~m}$
c. $\frac{82}{100}$
d. $\frac{76}{100}$

Name \qquad Date \qquad

1. Find the equivalent fraction using multiplication or division. Shade the area models to show the equivalency. Recordit as a decimal.
a. $\frac{4 \times}{10 \times}=\frac{}{100}$
b. $\frac{60 \div}{100 \div}=\frac{}{10}$

2. Complete the number sentences. Shade the equivalent amount on the area model, drawing horizontal lines to make hundredths.
a. 36 hundredths $=$ \qquad tenths + \qquad hundredths

Decimal form: \qquad
Fraction form: \qquad

b. 82 hundredths $=$ \qquad tenths + \qquad hundredths

Decimal form: \qquad
Fraction form: \qquad

3. Circle hundredths to compose as many tenths as you can. Complete the number sentences. Represent each with a number bond as shown.
a.

\qquad hundredths = \qquad tenth + \qquad hundredths
b.

\qquad hundredths = \qquad tenths + \qquad hundredths
4. Use both tenths and hundredths place value disks to represent each number. Write the equivalent number in decimal, fraction, and unit form.

\qquad Date \qquad

1. Shade the area models to represent the number, drawing horizontal lines to make hundredths as needed. Locate the corresponding point on the number line. Label with a point, and record the mixed number as a decimal.
a. $2 \frac{35}{100}=$ \qquad

b. $3 \frac{17}{100}=$ \qquad

2. Estimate to locate the points on the numberlines.
a. $5 \frac{90}{100}$
b. $3 \frac{25}{100}$
 units of ones, tenths, and hundredths in fraction and decimal forms.
3. Write the equivalent fraction and decimal for each of the following numbers.

a. 2 ones 2 hundredths	b. 2 ones 16 hundredths
c. 3 ones 7 hundredths	d. 1 one 18 hundredths
e. 9 ones 62 hundredths	f. 6 ones 20 hundredths

4. Draw lines from dot to dot to match the decimal form to both the unit form and fraction form. All unit forms and fractions have at least one match, and some have more than one match.

4 ones 18 hundredths \bullet	\bullet	4.80	\bullet	\bullet	$4 \frac{18}{100}$
4 ones 8 hundredths	\bullet	\bullet	4.8	\bullet	\bullet

Name \qquad Date \qquad

1. Write a decimal number sentence to identify the total value of the place value disks.
a.

3 tens

4 tenths
0.010 .01
2 hundredths

$+\quad+\quad=\quad$
2. Use the place value chart to answer the following questions. Express the value of the digit in unit form.

hundreds	tens	ones	.	tenths	hundredths
8	2	7	6	4	

a. The digit \qquad is in the hundreds place. It has a value of \qquad .
b. The digit \qquad is in the tens place. It has a value of \qquad .
c. The digit \qquad is in the tenths place. It has a value of \qquad .
d. The digit \qquad is in the hundredths place. It has a value of \qquad .

hundreds	tens	ones	tenths	hundredths
3	4	5		1
9				

e. The digit \qquad is in the hundreds place. It has a value of \qquad .
f. The digit \qquad is in the tens place. It has a value of \qquad .
g. The digit \qquad is in the tenths place. It has a value of \qquad .
h. The digit \qquad is in the hundredths place. It has a value of \qquad .
3. Write each decimal as an equivalent fraction. Then, write each number in expanded form, using both decimal and fraction notation. The first one has been done foryou.

Decimal and Fraction Form	Expanded Form	
	Fraction Notation	Decimal Notation
$14.23=14 \frac{23}{100}$	$\begin{gathered} (1 \times 10)+(4 \times 1)+\left(2 \times \frac{1}{10}\right)+\left(3 \times \frac{1}{100}\right) \\ 10+4+\frac{2}{10}+\frac{3}{100} \end{gathered}$	$\begin{gathered} (1 \times 10)+(4 \times 1)+(2 \times 0.1)+(3 \times 0.01) \\ 10+4+0.2+0.03 \end{gathered}$
$25.3=$		
$39.07=$		
$40.6=$		
$208.90=$		
$510.07=$		
$900.09=$		

Name \qquad Date \qquad

1. Use the area model to represent $\frac{220}{100}$. Complete the number sentence.
a. $\frac{220}{100}=$ \qquad tenths = \qquad ones \qquad tenths = \qquad
\qquad

b. In the space below, explain how you determined your answer to part (a).
2. Draw place value disks to represent the following decompositions:

3 ones = \qquad tenths

3 tenths = \qquad hundredths

ones	\cdot	tenths	hundredths

2 ones 3 tenths = \qquad tenths

ones	\cdot	tenths	hundredths

ones	\cdot	tenths	hundredths

3 tenths 3 hundredths = \qquad hundredths

ones	\cdot	tenths	hundredths

3. Decompose the units to represent each number as tenths.
a. $1=$ \qquad tenths
b. $2=$ \qquad tenths
c. $1.3=$ \qquad tenths
d. $2.6=$ \qquad tenths
e. $10.3=$ \qquad tenths
f. $20.6=$ \qquad tenths
4. Decompose the units to represent each number as hundredths.
a. $1=$ \qquad hundredths
b. $2=$ \qquad hundredths
c. $1.3=$ \qquad hundredths
d. $2.6=$ \qquad hundredths
e. $10.3=$ \qquad hundredths
f. $20.6=$ \qquad hundredths
5. Complete the chart. The first one has been done foryou.

Decimal	Mixed Number	Tenths	Hundredths
4.1	$4 \frac{1}{10}$	41 tenths $\frac{41}{10}$	410 hundredths $\frac{410}{100}$
5.3			
9.7			
10.9			
68.5			

Name \qquad Date \qquad

1. Express the lengths of the shaded parts in decimal form. Write a sentence that compares the two lengths. Use the expression shorter than or longer than in your sentence.
a.
1 meter

b.

1 meter

c. List all four lengths from least to greatest.
2. a. Examine the mass of each item as shown below on the 1-kilogram scales. Put an X over the items that are heavier than the volleyball

0.15 kg

0.62 kg

0.43 kg

0.25 kg
b. Express the mass of each item on the place value chart.

Mass of Sport Balls (kilograms)

Sport Balls	ones	.	tenths	hundredths
baseball				
volleyball				
basketball				
soccer ball				

c. Complete the statements below using the words heavier than or lighter than in your statements. The soccer ball is \qquad the baseball.

The volleyballis \qquad the basketball.
3. Record the volume of water in each graduated cylinder on the place value chart below.

0.7 liter
B

C
二
二
$=$

Volume of Water (liters)

Cylinder	ones	.	tenths	hundredths
A				
B				
C				
D				
E				
F				

Compare the values using $>,<$, or $=$.
a. $\quad 0.4 \mathrm{~L}$
b. $\quad 0.62 \mathrm{~L}$ \qquad 0.7 L
c. $\quad 0.2 \mathrm{~L}$ \qquad 0.28 L
d. Write the volume of water in each graduated cylinder in orderfrom least to greatest.

Name \qquad Date \qquad

1. Shade the parts of the area models below, decomposing tenths as needed, to represent the pairs of decimal numbers. Fill in the blank with $<,>$, or $=$ to compare the decimal numbers.
a. $\quad 0.19$ \qquad 0.3

b. 0.6 \qquad 0.06

C. 1.8 \qquad 1.53

d. 0.38 \qquad 0.7

2. Locate and label the points for each of the decimal numbers on the number line. Fill in the blank with $<,>$, or = to compare the decimal numbers.
a. 7.2 \qquad 7.02

b. $\quad 18.19$ \qquad 18.3

18.1
18.2
18.3
18.4
3. Use the symbols <, $>$, or = to compare.
a. 2.68 \qquad 2.54
b. 6.37 \qquad 6.73
c. 9.28 \qquad 7.28
d. 3.02 \qquad 3.2
e. 13.1 \qquad 13.10
f. 5.8 \qquad 5.92
4. Use the symbols <, >, or = to compare. Use pictures as needed to solve.
a. 57 tenths \qquad 5.7
b. 6.2 \qquad 6 ones and 2 hundredths
c. 33 tenths \qquad
e. $\frac{236}{100}$
2.36 33 hundredths
d. 8.39 \qquad $8 \frac{39}{10}$
f. 3 tenths \qquad 22 hundredths

Name \qquad Date \qquad

1. Complete the number sentence by expressing each part using hundredths. Model using the place value chart, as shown in part (a).

ones	-	tenths	hundredths
			: : • -
			$\bullet \bullet \bullet \bullet$

a. 1 tenth +8 hundredths $=$ \qquad hundredths

ones	-	tenths	hundredths

b. 2 tenths +3 hundredths $=$ \qquad hundredths

ones	\bullet	tenths	hundredths

c. 1 tenth +14 hundredths = \qquad hundredths
2. Solve by converting all addends to hundredths before solving.
a. 1 tenth +2 hundredths $=$ \qquad hundredths +2 hundredths $=$ \qquad hundredths
b. 4 tenths +11 hundredths $=$ \qquad hundredths + \qquad hundredths = \qquad hundredths
c. 8 tenths +25 hundredths $=$ \qquad hundredths + \qquad hundredths = \qquad hundredths
d. 43 hundredths +6 tenths $=$ \qquad hundredths + \qquad hundredths = \qquad hundredths
3. Find the sum. Convert tenths to hundredths as needed. Write your answer as a decimal.
a. $\frac{3}{10}+\frac{7}{100}$
b. $\frac{16}{100}+\frac{5}{10}$
C. $\frac{5}{10}+\frac{40}{100}$
d. $\frac{20}{100}+\frac{8}{10}$
4. Solve. Write your answer as a decimal.
a. $\frac{5}{10}+\frac{53}{100}$
b. $\frac{27}{100}+\frac{8}{10}$
c. $\frac{4}{10}+\frac{78}{100}$
d. $\frac{98}{100}+\frac{7}{10}$
5. Cameron measured $\frac{65}{100}$ inch of rainwater on the first day of April. On the second day of April, he measured $\frac{83}{100}$ inch of rainwater. How many total inches of rainwater did Cameron measure on the first two days of April?

Name \qquad Date \qquad

1. Solve. Convert tenths to hundredths before finding the sum. Rewrite the complete number sentence in decimal form. Problems 1(a) and 1(b) are partially completed foryou.

| a. $5 \frac{2}{10}+\frac{7}{100}=5 \frac{20}{100}+\frac{7}{100}=\ldots$ | b. $5 \frac{2}{10}+3 \frac{7}{100}=8 \frac{20}{100}+\frac{7}{100}=$ |
| :--- | :--- | :--- |
| $5.2+0.07=$ | |
| | |
| c. $6 \frac{5}{10}+\frac{1}{100}$ | d. $6 \frac{\mathbf{5}}{\mathbf{1 0}}+7 \frac{1}{100}$ |

2. Solve. Then, rewrite the complete number sentence in decimal form.

a. $4 \frac{9}{10}+5 \frac{10}{100}$	b. $8 \frac{7}{10}+2 \frac{65}{100}$
c. $7 \frac{3}{10}+6 \frac{87}{100}$	d. $5 \frac{48}{100}+7 \frac{8}{10}$

3. Solve by rewriting the number sentence in fraction form. After solving, rewrite the complete number sentence in decimal form.

a. $2.1+0.87=2 \frac{1}{10}+\frac{87}{100}$	b. $7.2+2.67$	
c. $7.3+1.8$	d. $7.3+1.86$	
e. $6.07+3.93$	f. $6.87+3.9$	
g. $8.6+4.67$		

Name \qquad Date \qquad

1. The snowfall in Year 1 was 2.03 meters. The snowfall in Year 2 was 1.6 meters. How many total meters of snow fell in Years 1 and 2?
2. A deli sliced 22.6 kilograms of roast beef one week and 13.54 kilograms the next. How many total kilograms of roast beef did the deli slice in the two weeks?
3. The school cafeteria served 125.6 liters of milk on Monday and 5.34 more liters of milk on Tuesday than on Monday. How many total liters of milk were served on Monday and Tuesday?
4. Max, Maria, and Armen were ateam in a relay race. Max ran his part in 17.3 seconds. Maria was 0.7 seconds slower than Max. Armen was 1.5 seconds slowerthan Maria. What was the total time for the team?
